三角函数知识总结一、知识框架二、知识点、概念总结1.Rt△ABC中(1)∠A的对边与斜边的比值是∠A的正弦,记作sinA=∠A的对边斜边(2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA=∠A的邻边斜边(3)∠A的对边与邻边的比值是∠A的正切,记作tanA=∠A的对边∠A的邻边(4)∠A的邻边与对边的比值是∠A的余切,记作cota=∠A的邻边∠A的对边2.特殊值的三角函数:asinacosatanacota30°123233345°22221160°32123333.互余角的三角函数间的关系sin(90°-α)=cosα,cos(90°-α)=sinα,tan(90°-α)=cotα,cot(90°-α)=tanα.4.同角三角函数间的关系平方关系:sin2(α)+cos2(α)=1tan2(α)+1=sec2(α)cot2(α)+1=csc2(α)积的关系:sinα=tanα·cosαcosα=cotα·sinαtanα=sinα·secαcotα=cosα·cscαsecα=tanα·cscαcscα=secα·cotα倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=15.三角函数值(1)特殊角三角函数值(2)0°~90°的任意角的三角函数值,查三角函数表。(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤∠A≤90°间变化时,0≤sinα≤1,1≥cosA≥0,当角度在0°∠A90°间变化时,tanA0,cotA0.6.解直角三角形的基本类型解直角三角形的基本类型及其解法如下表:类型已知条件解法两边两直角边a、bc=22ab,tanA=ab,∠B=90°-∠A一直角边a,斜边cb=22ca,sinA=ac,∠B=90°-∠A一边一锐角一直角边a,锐角A∠B=90°-∠A,b=a·cotA,c=sinaA斜边c,锐角A∠B=90°-∠A,a=c·sinA,b=c·cosA7.仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.要点一:锐角三角函数的基本概念DABCEFAOBECD1.(·河北中考)如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD=24m,OE⊥CD于点E.已测得sin∠DOE=1213.(1)求半径OD;(2)根据需要,水面要以每小时0.5m的速度下降,则经过多长时间才能将水排干?2.(綦江中考)如图,在矩形ABCD中,E是BC边上的点,AEBC,DFAE,垂足为F,连接DE.(1)求证:ABE△DFA≌△;(2)如果10ADAB,=6,求sinEDF的值.3、(宁夏中考)如图,在△ABC中,∠C=90°,sinA=54,AB=15,求△ABC的周长和tanA的值.4、(肇庆中考)在Rt△ABC中,∠C=90°,a=3,c=5,求sinA和tanA的值.5、(·芜湖中考)如图,在△ABC中,AD是BC上的高,tancosBDAC,(1)求证:AC=BD;(2)若12sin13C,BC=12,求AD的长.要点二、特殊角的三角函数值一、选择题1.(·钦州中考)sin30°的值为()A.32B.22C.12D.332.(长春中考).菱形OABC在平面直角坐标系中的位置如图所示,452AOCOC°,,则点B的坐标为()A.(21),B.(12),C.(211),D.(121),3.(定西中考)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为()A.8米B.83米C.833米D.433米4.宿迁中考)已知为锐角,且23)10sin(,则等于()A.50B.60C.70D.805.(毕节中考)A(cos60°,-tan30°)关于原点对称的点A1的坐标是()A.1323,B.3323,C.1323,D.1322,6.(襄樊中考)计算:2cos45tan60cos30等于()(A)1(B)2(C)2(D)3三、解答题11.(·黄石中考)计算:3-1+(2π-1)0-33tan30°-tan45°12.(崇左中考)计算:0200912sin603tan30(1)3°°.13.(义乌中考)计算:33sin602cos458要点三、解直角三角形在实际问题中的运用1.(庆阳中考)如图(1),一扇窗户打开后用窗钩AB可将其固定.如图(2)是如图(1)中窗子开到一定位置时的平面图,若∠AOB=45°,∠OAB=30°,OA=60cm,求点B到OA边的距离.(31.7≈,结果精确到整数)2.(郴州中考)如图,数学活动小组来到校园内的一盏路灯下测量路灯的高度,测角仪AB的高度为1.5米,测得仰角为30°,点B到电灯杆底端N的距离BN为10米,求路灯的高度MN是多少米?(取2=1.414,3=1.732,结果保留两位小数)3、(眉山中考)海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45方向,求此时灯塔B到C处的距离。4、(常德中考)如图,某人在D处测得山顶C的仰角为30o,向前走200米来到山脚A处,测得山坡AC的PABQ北坡度为i=1∶0.5,求山的高度(不计测角仪的高度,31.73≈,结果保留整数).5、(广安中考)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由。(参考数据:21.414,31.732,62.449)6.(广东中考)17.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路.现新修一条路AC到公路l.小明测量出∠ACD=30º,∠ABD=45º,BC=50m.请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:414.12,732.13).7.(安徽中考)19.如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m,高度C处的飞机,测量人员测得正前方A、B两点处的俯角分别为60°和45°,求隧道AB的长.8.(连云港市中考)24.(本题满分10分)如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于第6题图BClDA第19题图东北600ABC南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏东49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°=0.75)9.(苏州市中考)25.(本题满分5分)如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:3,点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上,且PH⊥HC.(1)山坡坡角(即∠ABC)的度数等于▲度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:3≈1.732).10.(宿迁市中考)23.(本题满分10分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取3=1.732,结果精确到1m)11.(成都市中考)16.(本小题满分6分)如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B处时,发现灯塔A在我军(第23题)EDCBA1.54530100舰的正北方向500米处;当该军舰从B处向正西方向行驶至达C处时,发现灯塔A在我军舰的北偏东60°的方向。求该军舰行驶的路程.(计算过程和结果均不取近似值)12.(金华市中考)19.(本题6分)生活经验表明,靠墙摆放的梯子,当50°≤α≤70°时(α为梯子与地面所成的角),能够使人安全攀爬.现在有一长为6米的梯子AB,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC.(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)13、(盐城市中考)24.(本题满分10分)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:3≈1.732)第19题图ABα梯子CCE60°30°ABCD