含参数的一元二次不等式和含参不等式恒成立问题(上课用)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

v1.0可编辑可修改1含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢对含参一元二次不等式常用的分类方法有三种:一、按2x项的系数a的符号分类,即0,0,0aaa;例1解不等式:0122xaax分析:本题二次项系数含有参数,044222aaa,故只需对二次项系数进行分类讨论。例2解不等式00652aaaxax分析因为0a,0,所以我们只要讨论二次项系数的正负。二、按判别式的符号分类,即0,0,0;例3解不等式042axx分析本题中由于2x的系数大于0,故只需考虑与根的情况。例4解不等式Rmxxm014122v1.0可编辑可修改2三、按方程02cbxax的根21,xx的大小来分类,即212121,,xxxxxx;例5解不等式)0(01)1(2axaax分析:此不等式可以分解为:0)1(axax,故对应的方程必有两解。本题只需讨论两根的大小即可。例6解不等式06522aaxx,0a分析此不等式0245222aaa,又不等式可分解为0)3(2axax,故只需比较两根a2与a3的大小.含参不等式恒成立问题的求解策略“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。本文就结合实例谈谈这类问题的一般求解策略。一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数),0()(2Rxacbxaxxf,有1)0)(xf对Rx恒成立00a;2)0)(xf对Rx恒成立.00a例7:若不等式02)1()1(2xmxm的解集是R,求m的范围。解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m,所以要讨论m-1是否是0。v1.0可编辑可修改3例8.已知函数])1(lg[22axaxy的定义域为R,求实数a的取值范围。二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)axf)(恒成立min)(xfa2)axf)(恒成立max)(xfa例9、若2,2x时,不等式23xaxa恒成立,求a的取值范围。例9.函数),1[,2)(2xxaxxxf,若对任意),1[x,0)(xf恒成立,求实数a的取值范围。三、分离变量法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。这种方法本质也还是求最值,但它思路更清晰,操作性更强。一般地有:1)为参数)aagxf)(()(恒成立max)()(xfag2)为参数)aagxf)(()(恒成立max)()(xfag例11、已知,1x时,不等式21240xxaa恒成立,求a的取值范围。v1.0可编辑可修改4例12、已知函数lg2afxxx,若对任意2,x恒有0fx,试确定a的取值范围。四、变换主元法处理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量进行“换位”思考,往往会使问题降次、简化。例13.对任意]1,1[a,不等式024)4(2axax恒成立,求x的取值范围。分析:题中的不等式是关于x的一元二次不等式,但若把a看成主元,则问题可转化为一次不等式044)2(2xxax在]1,1[a上恒成立的问题。例14、若不等式2211xmx对满足2m的所有m都成立,求x的取值范围。五、数形结合法数学家华罗庚曾说过:“数缺形时少直观,形缺数时难入微”,这充分说明了数形结合思想的妙处,在不等式恒成立问题中它同样起着重要作用。我们知道,函数图象和不等式有着密切的联系:1))()(xgxf函数)(xf图象恒在函数)(xg图象上方;2))()(xgxf函数)(xf图象恒在函数)(xg图象下上方。v1.0可编辑可修改5例15.设xxxf4)(2,axxg134)(,若恒有)()(xgxf成立,求实数a的取值范围.例16.设22)(2mxxxf,当),1[x时,mxf)(恒成立,求实数m的取值范围。v1.0可编辑可修改6例1解:∵044222aaa解得方程0122xaax两根,24221aaaxaaax24222∴当0a时,解集为aaaxaaaxx242242|22或当0a时,不等式为012x,解集为21|xx当0a时,解集为aaaxaaax242242|22例2解032)65(2xxaxxa当0a时,解集为32|xxx或;当0a时,解集为32|xx例3解:∵162a∴当4,4a即0时,解集为R;当4a即Δ=0时,解集为2axRxx且;当4a或4a即0,此时两根分别为21621aax,21622aax,显然21xx,∴不等式的解集为21621622aaxaaxx〈或例4解因,012m2223414)4(mm所以当3m,即0时,解集为21|xx;当33m,即0时,解集为1321322222mmxmmxx〈或;当33mm或,即0时,解集为R。例5解:原不等式可化为:0)1(axax,令aa1,可得:1a∴当1a或10a时,aa1,故原不等式的解集为axax1|;当1a或1a时,aa1,可得其解集为;当01a或1a时,aa1,解集为axax1|。例6解原不等式可化为:0)3(2axax,对应方程0)3(2axax的两根为axax3,221,当0a时,即23aa,解集为axaxx23|或;当0a时,即23aa,解集为|23xxaxa或例7:(1)当m-1=0时,元不等式化为20恒成立,满足题意;v1.0可编辑可修改7(2)01m时,只需0)1(8)1(012mmm,所以,)9,1[m。例8.解:由题设可将问题转化为不等式0)1(22axax对Rx恒成立,即有04)1(22aa解得311aa或。所以实数a的取值范围为),31()1,(。例9解:设23fxxaxa,则问题转化为当2,2x时,fx的最小值非负。(1)当22a即:4a时,min2730fxfa73a又4a所以a不存在;(2)当222a即:44a时,2min3024aafxfa62a又44a42a(3)当22a即:4a时,min270fxfa7a又4a74a综上所得:72a例10解:若对任意),1[x,0)(xf恒成立,即对),1[x,02)(2xaxxxf恒成立,考虑到不等式的分母),1[x,只需022axx在),1[x时恒成立而得而抛物线axxxg2)(2在),1[x的最小值03)1()(minagxg得3a注:本题还可将)(xf变形为2)(xaxxf,讨论其单调性从而求出)(xf最小值。例11解:令2xt,,1x0,2t所以原不等式可化为:221taat,要使上式在0,2t上恒成立,只须求出21tftt在0,2t上的最小值即可。22211111124tfttttt11,2tmin324ftf234aa1322a例12解:根据题意得:21axx在2,x上恒成立,即:23axx在2,x上恒成立,设23fxxx,则23924fxx当2x时,max2fx所以2a例13.解:令44)2()(2xxaxaf,则原问题转化为0)(af恒成立(]1,1[a)。当2x时,可得0)(af,不合题意。当2x时,应有0)1(0)1(ff解之得31xx或。v1.0可编辑可修改8故x的取值范围为),3()1,(。注:一般地,一次函数)0()(kbkxxf在],[上恒有0)(xf的充要条件为0)(0)(ff。例14解:设2121fmmxx,对满足2m的m,0fm恒成立,2221210202021210xxffxx解得:171322x例15分析:在同一直角坐标系中作出)(xf及)(xg的图象如图所示,)(xf的图象是半圆)0(4)2(22yyx)(xg的图象是平行的直线系03334ayx。要使)()(xgxf恒成立,则圆心)0,2(到直线03334ayx的距离满足25338ad解得355aa或(舍去)例16.解:设mmxxxF22)(2,则当),1[x时,0)(xF恒成立当120)2)(1(4mmm即时,0)(xF显然成立;当0时,如图,0)(xF恒成立的充要条件为:1220)1(0mF解得23m。综上可得实数m的取值范围为)1,3[。Oxyx-1x-2-4yO-4

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功