1.4全称量词与存在量词1.4.1全称量词1.4.2存在量词1.4.3含有一个量词的命题的否定双基达标(限时20分钟)1.下列命题中,不是全称命题的是().A.任何一个实数乘以0都等于0B.自然数都是正整数C.每一个向量都有大小D.一定存在没有最大值的二次函数解析D选项是特称命题.答案D2.以下四个命题既是特称命题又是真命题的是().A.锐角三角形的内角是锐角或钝角B.至少有一个实数x,使x2≤0C.两个无理数的和必是无理数D.存在一个负数x,使1x2解析A中锐角三角形的内角都是锐角,所以是假命题;B中x=0时,x2=0,所以B既是特称命题又是真命题;C中因为3+(-3)=0,所以C是假命题;D中对于任一个负数x,都有1x0,所以D是假命题.答案B3.下列命题中的假命题是().A.∀x∈R,2x-10B.∀x∈N*,(x-1)20C.∃x0∈R,lgx01D.∃x0∈R,tanx0=2解析A中命题是全称命题,易知2x-10恒成立,故是真命题;B中命题是全称命题,当x=1时,(x-1)2=0,故是假命题;C中命题是特称命题,当x=1时,lgx=0,故是真命题;D中命题是特称命题,依据正切函数定义,可知是真命题.答案B4.命题p:∃x0∈R,x20+2x0+40的否定綈p:________.解析特称命题“∃x0∈M,p(x0)”的否定是全称命题“∀x∈M,綈p(x)”.故填∀x∈R,x2+2x+4≥0.答案∀x∈R,x2+2x+4≥05.对任意x3,xa恒成立,则实数a的取值范围是________.解析对任意x3,xa恒成立,即大于3的数恒大于a,∴a≤3.答案(-∞,3]6.判断下列命题的真假,并写出命题的否定:(1)有一个实数a,使不等式x2-(a+1)x+a0恒成立;(2)对任意实数x,不等式|x+2|≤0成立;(3)在实数范围内,有些一元二次方程无解.解(1)对于方程x2-(a+1)x+a=0的判别式Δ=(a+1)2-4a=(a-1)2≥0,则不存在实数a,使不等式x2-(a+1)x+a0恒成立,所以命题为假命题.它的否定为:对任意实数a,使x2-(a+1)x+a0不恒成立.(2)当x=1时,|x+2|0,所以原命题是假命题,它的否定为:存在实数x,使|x+2|0.(3)真命题,它的否定为:在实数范围内,所有的一元二次方程都有解.综合提高(限时25分钟)7.下列命题的否定为假命题的是().A.∀x∈R,-x2+x-10B.∀x∈R,|x|xC.∀x,y∈Z,2x-5y≠12D.∃x0∈R,sin2x0+sinx0+1=0解析命题的否定为假命题亦即原命题为真命题,只有选项A中的命题为真命题,其余均为假命题,所以选A.答案A8.若存在x0∈R,使ax20+2x0+a0,则实数a的取值范围是().A.a1B.a≤1C.-1a1D.-1a≤1解析当a≤0时,显然存在x0∈R,使ax20+2x0+a0;当a0时,必需Δ=4-4a20,解得-1a1,故0a1.综上所述,实数a的取值范围是a1.答案A9.命题“零向量与任意向量共线”的否定为________.解析命题“零向量与任意向量共线”即“任意向量与零向量共线”,是全称命题,其否定为特称命题:“有的向量与零向量不共线”.答案有的向量与零向量不共线10.若∀x∈R,f(x)=(a2-1)x是单调减函数,则a的取值范围是________.解析依题意有:0a2-11⇔a2-10a2-11⇔a-1或a1-2a2⇔-2a-1或1a2.答案(-2,-1)∪(1,2)11.已知命题“对于任意x∈R,x2+ax+1≥0”是假命题,求实数a的取值范围.解因为全称命题“对于任意x∈R,x2+ax+1≥0”的否定形式为:“存在x0∈R,x20+ax0+10”.由“命题真,其否定假;命题假,其否定真”可知,这个否定形式是真命题.由于函数f(x)=x2+ax+1是开口向上的抛物线,借助二次函数的图象易知:Δ=a2-40,解得a-2或a2.所以实数a的取值范围是(-∞,-2)∪(2,+∞).12.(创新拓展)若∀x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a的取值范围.解(1)当m=0时,f(x)=x-a与x轴恒相交,所以a∈R;(2)当m≠0时,二次函数f(x)=mx2+x-m-a的图象和x轴恒有公共点的充要条件是Δ=1+4m(m+a)≥0恒成立,即4m2+4am+1≥0恒成立.又4m2+4am+1≥0是一个关于m的二次不等式,恒成立的充要条件是Δ=(4a)2-16≤0,解得-1≤a≤1.综上所述,当m=0时,a∈R;当m≠0,a∈[-1,1].