2017-2018学年高中数学人教A版选修1-2创新应用:课下能力提升(六) Word版含解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

课下能力提升(六)[学业水平达标练]题组1用反证法证明“否定性”命题1.应用反证法推出矛盾的推理过程中,可作为条件使用的是()①结论的否定;②已知条件;③公理、定理、定义等;④原结论.A.①②B.②③C.①②③D.①②④2.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为________.3.等差数列{an}的前n项和为Sn,a1=1+2,S3=9+32.(1)求数列{an}的通项an与前n项和Sn;(2)设bn=Snn(n∈N*),求证:数列{bn}中任意不同的三项都不可能成为等比数列.题组2用反证法证明“至多”、“至少”型命题4.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,假设正确的是()A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至少有一个大于60°D.假设三内角至多有两个大于60°5.设实数a、b、c满足a+b+c=1,则a、b、c中至少有一个数不小于________.6.若x0,y0,且x+y2,求证:1+xy与1+yx中至少有一个小于2.题组3用反证法证明“唯一性”命题7.用反证法证明命题“关于x的方程ax=b(a≠0)有且只有一个解”时,反设是关于x的方程ax=b(a≠0)()A.无解B.有两解C.至少有两解D.无解或至少有两解8.“自然数a,b,c中恰有一个偶数”的否定正确的为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少有两个偶数9.求证:两条相交直线有且只有一个交点.[能力提升综合练]1.用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”,则假设的内容是()A.a,b都能被5整除B.a,b都不能被5整除C.a不能被5整除D.a,b有1个不能被5整除2.有以下结论:①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,|a|+|b|1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.下列说法中正确的是()A.①与②的假设都错误B.①与②的假设都正确C.①的假设正确;②的假设错误D.①的假设错误;②的假设正确3.设a、b、c都是正数,则三个数a+1b,b+1c,c+1a()A.都大于2B.至少有一个大于2C.至少有一个不大于2D.至少有一个不小于24.已知数列{an},{bn}的通项公式分别为an=an+2,bn=bn+1(a,b是常数),且a>b,那么两个数列中序号与数值均相同的项的个数有()A.0个B.1个C.2个D.无穷多个5.已知平面α∩平面β=直线a,直线b⊂α,直线c⊂β,b∩a=A,c∥a,求证:b与c是异面直线,若利用反证法证明,则应假设________.6.完成反证法证题的全过程.题目:设a1,a2,…,a7是1,2,…,7的一个排列,求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数.证明:假设p为奇数,则________均为奇数.①因奇数个奇数之和为奇数,故有奇数=________②=________③=0.这与0为偶数矛盾,说明p为偶数.7.设a,b是异面直线,在a上任取两点A1,A2,在b上任取两点B1,B2,试证:A1B1与A2B2也是异面直线.8.用反证法证明:对于直线l:y=x+k,不存在这样的非零实数k,使得l与双曲线C:3x2-y2=1的交点A、B关于直线y=-x对称.答案[学业水平达标练]题组1用反证法证明“否定性”命题1.解析:选C根据反证法的基本思想,应用反证法推出矛盾的推导过程中可把“结论的否定”、“已知条件”、“公理、定理、定义”等作为条件使用.2.答案:③①②3.解:(1)设公差为d,由已知得a1=2+1,3a1+3d=9+32,解得d=2,故an=2n-1+2,Sn=n(n+2).(2)证明:由(1)得bn=Snn=n+2.假设数列{bn}中存在三项bp,bq,br(p,q,r互不相等)成等比数列,则b2q=bpbr,即(q+2)2=(p+2)(r+2),所以(q2-pr)+(2q-p-r)2=0.又p,q,r∈N*,所以q2-pr=0,2q-p-r=0.所以p+r22=pr.(p-r)2=0,所以p=r,这与p≠r矛盾.所以数列{bn}中任意不同的三项都不可能成为等比数列.题组2用反证法证明“至多”、“至少”型命题4.解析:选B“至少有一个”即“全部中最少有一个”.5.设实数a、b、c满足a+b+c=1,则a、b、c中至少有一个数不小于________.解析:假设a、b、c都小于13,则a+b+c<1与a+b+c=1矛盾.故a、b、c中至少有一个不小于13.答案:136.解:假设1+xy与1+yx都不小于2,即1+xy≥2,1+yx≥2.又∵x0,y0,∴1+x≥2y,1+y≥2x.两式相加得2+x+y≥2(x+y),即x+y≤2.这与已知x+y2矛盾.所以假设不成立,所以1+xy与1+yx中至少有一个小于2.题组3用反证法证明“唯一性”命题7.解析:选D“唯一”的否定上“至少两解或无解”.8.解析:选D自然数a,b,c的奇偶性共有四种情形:(1)3个都是奇数;(2)2个奇数,1个偶数;(3)1个奇数,2个偶数;(4)3个都是偶数.所以否定正确的是a,b,c中都是奇数或至少有两个偶数.9.证明:因为两直线为相交直线,故至少有一个交点,假设两条直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B的直线就有两条,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.[能力提升综合练]1.解析:选B用反证法只否定结论即可,而“至少有一个”的反面是“一个也没有”,故B正确.2.解析:选D用反证法证题时一定要将对立面找准.在①中应假设p+q2.故①的假设是错误的,而②的假设是正确的.3.解析:选D因为a、b、c都是正数,则有a+1b+b+1c+c+1a=a+1a+b+1b+c+1c≥6.故三个数中至少有一个不小于2.4.解析:选A假设存在序号和数值均相等的项,即存在n使得an=bn,由题意a>b,n∈N*,则恒有an>bn,从而an+2>bn+1恒成立,∴不存在n使得an=bn.5.解析:∵空间中两直线的位置关系有3种:异面、平行、相交,∴应假设b与c平行或相交.答案:b与c平行或相交6.解析:证明过程应为:假设p为奇数,则有a1-1,a2-2,…,a7-7均为奇数,因为奇数个奇数之和为奇数,故有奇数=(a1-1)+(a2-2)+…+(a7-7)=(a1+a2+…+a7)-(1+2+…+7)=0.这与0为偶数矛盾,说明p为偶数.答案:a1-1,a2-2,…,a7-7(a1-1)+(a2-2)+…+(a7-7)(a1+a2+…+a7)-(1+2+…+7)7.证明:假设A1B1与A2B2不是异面直线,则A1B1与A2B2可以确定一个平面α,点A1,A2,B1,B2都在平面α内,于是A1A2⊂α,B1B2⊂α,即a⊂α,b⊂α,这与已知a,b是异面直线矛盾,所以假设错误.所以A1B1与A2B2也是异面直线.8.证明:假设存在非零实数k,使得A、B关于直线y=-x对称,设A(x1,y1)、B(x2,y2),则线段AB的中点Mx1+x22,y1+y22在直线y=-x上,由y=x+k,y2=3x2-1得2x2-2kx-1-k2=0.∴x1+x2=k,可得Mk2,3k2.这与M在直线y=-x上矛盾.所以假设不成立,故不存在非零实数k,使得A、B关于直线y=-x对称.

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功