24.1圆的有关性质第二十四章圆24.1.1圆九年级数学上(RJ)教学课件骑车运动看了此画,你有何想法?思考:车轮为什么做成圆形?做成三角形、正方形可以吗?车轮为圆形的原理分析:(下图为FLASH动画,点击)情景:一些学生正在做投圈游戏,他们呈“一”字排开.这样的队形对每一人都公平吗?你认为他们应当排成什么样的队形?讲授新课探究圆的概念一合作探究甲丙乙丁为了使游戏公平,在目标周围围成一个圆排队,因为圆上各点到圆心的距离都等于半径.·rOA圆的旋转定义在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.以点O为圆心的圆,记作“⊙O”,读作“圆O”.有关概念固定的端点O叫做圆心,线段OA叫做半径,一般用r表示.问题观察画圆的过程,你能说出圆是如何画出来的吗?视频:画圆实际操作演示一是圆心,圆心确定其位置;二是半径,半径确定其大小.同心圆等圆半径相同,圆心不同圆心相同,半径不同确定一个圆的要素圆可以看成到定点距离等于定长的所有点组成的.满足什么条件的?有间隙吗?圆也可以看成是由多个点组成的到定点的距离等于定长的点都在同一个圆上吗?(1)圆上各点到定点(圆心O)的距离都等于.(2)到定点的距离等于定长的点都在.圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.O·ACErrrrrD定长r同一个圆上圆的集合定义想一想:从画圆的过程可以看出什么呢?要点归纳圆的基本性质o•同圆半径相等.(本页为FLASH动画,播放模式下点击)典例精析例1矩形ABCD的对角线AC、BD相交于O.求证:A、B、C、D在以O为圆心的同一圆上.ABCDO证明:∵四边形ABCD是矩形,∴AO=OC,OB=OD.又∵AC=BD,∴OA=OB=OC=OD.∴A、B、C、D在以O为圆心,以OA为半径的圆上.弦:·COAB连接圆上任意两点的线段(如图中的AC)叫做弦.经过圆心的弦(如图中的AB)叫做直径.1.弦和直径都是线段.2.直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径.注意圆的有关概念二OABOAB探索:圆中最长的弦是什么?为什么?OABCCDCDOABCOABCDOABCD【发现】直径是最长的弦弧:·COAB圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.劣弧与优弧·COAB半圆圆上任意两点间的部分叫做圆弧,简弧.以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”.(小于半圆的弧叫做劣弧.如图中的AC;(大于半圆的弧叫做优弧.如图中的ABC.(等圆:·COA能够重合的两个圆叫做等圆.·CO1A容易看出:等圆是两个半径相等的圆.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.结论:等弧仅仅存在于同圆或者等圆中.可见这两条弧不可能完全重合实际上这两条弧弯曲程度不同“等弧”要区别于“长度相等的弧”如图,如果AB和CD的拉直长度都是10cm,平移并调整小圆的位置,是否能使这两条弧完全重合?︵︵DCAB想一想:长度相等的弧是等弧吗?例2如图.(1)请写出以点A为端点的优弧及劣弧;(2)请写出以点A为端点的弦及直径.弦AF,AB,AC.其中弦AB又是直径.(3)请任选一条弦,写出这条弦所对的弧.答案不唯一,如:弦AF,它所对的弧是.ABCEFDO劣弧:优弧:AF,(AD,(AC,(AE.(AFE,(AFC,(ADE,(ADC.(AF(要点归纳1.根据圆的定义,“圆”指的是“圆周”,而不是“圆面”.2.直径是圆中最长的弦.附图解释:·COAB连接OC,在△AOC中,根据三角形三边关系有AO+OCAC,而AB=2OA,AO=OC,所以ABAC.例3如图,MN是半圆O的直径,正方形ABCD的顶点A、D在半圆上,顶点B、C在直径MN上,求证:OB=OC.图4DBONMAC连OA,OD即可,同圆的半径相等.Ⅱ10?x2x22210x+=即(2x)在Rt△ABO中,222ABBOAO+=算一算:设在例3中,⊙O的半径为10,则正方形ABCD的边长为.451.填空:(1)______是圆中最长的弦,它是______的2倍.(2)图中有条直径,条非直径的弦,圆中以A为一个端点的优弧有条,劣弧有条.直径半径一二四四2.一点和⊙O上的最近点距离为4cm,最远的距离为10cm,则这个圆的半径是.7cm或3cm当堂练习ABCDOFE3.判断下列说法的正误,并说明理由或举反例.(1)弦是直径;(2)半圆是弧;(3)过圆心的线段是直径;(4)过圆心的直线是直径;(5)半圆是最长的弧;(6)直径是最长的弦;(7)长度相等的弧是等弧.圆定义旋转定义要画一个确定的圆,关键是确定圆心和半径集合定义同圆半径相等有关概念弦(直径)直径是圆中最长的弦弧半圆是特殊的弧劣弧半圆优弧同心圆等圆同圆等弧能够互相重合的两段弧课堂小结