一.填空题(共2小题)1.如图,矩形纸片ABCD中,AB=,BC=.第一次将纸片折叠,使点B与点D重合,折痕与BD交于点O1;O1D的中点为D1,第二次将纸片折叠使点B与点D1重合,折痕与BD交于点O2;设O2D1的中点为D2,第三次将纸片折叠使点B与点D2重合,折痕与BD交于点O3,….按上述方法折叠,第n次折叠后的折痕与BD交于点On,则BO1=_________,BOn=_________.2.如图,在平面直角坐标系xoy中,A(﹣3,0),B(0,1),形状相同的抛物线Cn(n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C2的顶点坐标为_________;抛物线C8的顶点坐标为_________.二.解答题(共28小题)3.已知:关于x的一元二次方程kx2+2x+2﹣k=0(k≥1).(1)求证:方程总有两个实数根;(2)当k取哪些整数时,方程的两个实数根均为整数.4.已知:关于x的方程kx2+(2k﹣3)x+k﹣3=0.(1)求证:方程总有实数根;(2)当k取哪些整数时,关于x的方程kx2+(2k﹣3)x+k﹣3=0的两个实数根均为负整数?5.在平面直角坐标系中,将直线l:沿x轴翻折,得到一条新直线与x轴交于点A,与y轴交于点B,将抛物线C1:沿x轴平移,得到一条新抛物线C2与y轴交于点D,与直线AB交于点E、点F.(1)求直线AB的解析式;(2)若线段DF∥x轴,求抛物线C2的解析式;(3)在(2)的条件下,若点F在y轴右侧,过F作FH⊥x轴于点G,与直线l交于点H,一条直线m(m不过△AFH的顶点)与AF交于点M,与FH交于点N,如果直线m既平分△AFH的面积,又平分△AFH的周长,求直线m的解析式.6.已知:关于x的一元二次方程﹣x2+(m+4)x﹣4m=0,其中0<m<4.(1)求此方程的两个实数根(用含m的代数式表示);(2)设抛物线y=﹣x2+(m+4)x﹣4m与x轴交于A、B两点(A在B的左侧),若点D的坐标为(0,﹣2),且AD•BD=10,求抛物线的解析式;(3)已知点E(a,y1)、F(2a,y2)、G(3a,y3)都在(2)中的抛物线上,是否存在含有y1、y2、y3,且与a无关的等式?如果存在,试写出一个,并加以证明;如果不存在,说明理由.7.点P为抛物线y=x2﹣2mx+m2(m为常数,m>0)上任一点,将抛物线绕顶点G逆时针旋转90°后得到的新图象与y轴交于A、B两点(点A在点B的上方),点Q为点P旋转后的对应点.(1)当m=2,点P横坐标为4时,求Q点的坐标;(2)设点Q(a,b),用含m、b的代数式表示a;(3)如图,点Q在第一象限内,点D在x轴的正半轴上,点C为OD的中点,QO平分∠AQC,AQ=2QC,当QD=m时,求m的值.8.关于x的一元二次方程x2﹣4x+c=0有实数根,且c为正整数.(1)求c的值;(2)若此方程的两根均为整数,在平面直角坐标系xOy中,抛物线y=x2﹣4x+c与x轴交于A、B两点(A在B左侧),与y轴交于点C.点P为对称轴上一点,且四边形OBPC为直角梯形,求PC的长;(3)将(2)中得到的抛物线沿水平方向平移,设顶点D的坐标为(m,n),当抛物线与(2)中的直角梯形OBPC只有两个交点,且一个交点在PC边上时,直接写出m的取值范围.9.如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:FD2=FB•FC.10.如图,AD是△ABC的角平分线,EF是AD的垂直平分线.求证:(1)∠EAD=∠EDA.(2)DF∥AC.(3)∠EAC=∠B.11.已知:关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0(m为实数)(1)若方程有两个不相等的实数根,求m的取值范围;(2)在(1)的条件下,求证:无论m取何值,抛物线y=(m﹣1)x2+(m﹣2)x﹣1总过x轴上的一个固定点;(3)关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0有两个不相等的整数根,把抛物线y=(m﹣1)x2+(m﹣2)x﹣1向右平移3个单位长度,求平移后的解析式.12.已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.(1)如图1,若∠DAC=2∠ABC,AC=BC,四边形ABCD是平行四边形,则∠ABC=_________;(2)如图2,若∠ABC=30°,△ACD是等边三角形,AB=3,BC=4.求BD的长;(3)如图3,若∠ACD为锐角,作AH⊥BC于H.当BD2=4AH2+BC2时,∠DAC=2∠ABC是否成立?若不成立,请说明你的理由;若成立,证明你的结论.13.已知关于x的方程mx2+(3﹣2m)x+(m﹣3)=0,其中m>0.(1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2,其中x1>x2,若,求y与m的函数关系式;(3)在(2)的条件下,请根据函数图象,直接写出使不等式y≤﹣m成立的m的取值范围.14.已知:关于x的一元二次方程x2+(n﹣2m)x+m2﹣mn=0①(1)求证:方程①有两个实数根;(2)若m﹣n﹣1=0,求证:方程①有一个实数根为1;(3)在(2)的条件下,设方程①的另一个根为a.当x=2时,关于m的函数y1=nx+am与y2=x2+a(n﹣2m)x+m2﹣mn的图象交于点A、B(点A在点B的左侧),平行于y轴的直线L与y1、y2的图象分别交于点C、D.当L沿AB由点A平移到点B时,求线段CD的最大值.15.如图,已知抛物线y=(3﹣m)x2+2(m﹣3)x+4m﹣m2的顶点A在双曲线y=上,直线y=mx+b经过点A,与y轴交于点B,与x轴交于点C.(1)确定直线AB的解析式;(2)将直线AB绕点O顺时针旋转90°,与x轴交于点D,与y轴交于点E,求sin∠BDE的值;(3)过点B作x轴的平行线与双曲线交于点G,点M在直线BG上,且到抛物线的对称轴的距离为6.设点N在直线BG上,请直接写出使得∠AMB+∠ANB=45°的点N的坐标.16.如图,AB为⊙O的直径,AB=4,点C在⊙O上,CF⊥OC,且CF=BF.(1)证明BF是⊙O的切线;(2)设AC与BF的延长线交于点M,若MC=6,求∠MCF的大小.17.如图1,已知等边△ABC的边长为1,D、E、F分别是AB、BC、AC边上的点(均不与点A、B、C重合),记△DEF的周长为p.(1)若D、E、F分别是AB、BC、AC边上的中点,则p=_________;(2)若D、E、F分别是AB、BC、AC边上任意点,则p的取值范围是_________.考点:翻折变换(折叠问题);矩形的性质。1077676专题:规律型。分析:(1)结合图形和已知条件,可以推出BD的长度,根据轴对称的性质,即可得出O1点为BD的中点,很容易就可推出O1B=2;(2)依据第二次将纸片折叠使点B与点D1重合,折痕与BD交于点O2,O1D的中点为D1,可以推出O2D1=BO2==;以此类推,即可推出:BOn=.解答:解:∵矩形纸片ABCD中,,∴BD=4,(1)当n=1时,∵第一次将纸片折叠,使点B与点D重合,折痕与BD交于点O1,∴O1D=O1B=2,∴BO1=2=;(2)当n=2时,∵第二次将纸片折叠使点B与点D1重合,折痕与BD交于点O2,O1D的中点为D1,∴O2D1=BO2===,∵设O2D1的中点为D2,第三次将纸片折叠使点B与点D2重合,折痕与BD交于点O3,∴O3D2=O3B==,∴以此类推,当n次折叠后,BOn=.点评:本题考查图形的翻折变换,解直角三角形的有关知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质推出结论考点:二次函数的性质。1077676专题:规律型。分析:根据A(﹣3,0),B(0,1)的坐标求直线AB的解析式为y=x+1,因为顶点C2的在直线AB上,C2坐标可求;根据横坐标的变化规律可知,C8的横坐标为55,代入直线AB的解析式y=x+1中,可求纵坐标.解答:解:设直线AB的解析式为y=kx+b则解得k=,b=1∴直线AB的解析式为y=x+1∵抛物线C2的顶点坐标的横坐标为3,且顶点在直线AB上∴抛物线C2的顶点坐标为(3,2)∵对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…∴每个数都是前两个数的和∴抛物线C8的顶点坐标的横坐标为55∴抛物线C8的顶点坐标为(55,).点评:此题考查了待定系数法求一次函数的解析式,还考查了点与函数关系式的关系,考查了学生的分析归纳能力.考点:根的判别式;解一元二次方程-公式法。1077676专题:计算题;证明题。分析:(1)先由k≠0,确定此方程为一元二次方程.要证明方程总有两个实数根,只有证明△≥0,通过代数式变形即可证明;(2)先利用求根公式求出两根,x1=﹣1,,只要2被k整除,并且有k≥1的整数,即可得到k的值.解答:证明:(1)∵k≥1,∴k≠0,此方程为一元二次方程,∵△=4﹣4k(2﹣k)=4﹣8k+4k2=4(k﹣1)2,而4(k﹣1)2≥0,∴△≥0,∴方程恒有两个实数根.(2)解:方程的根为,∵k≥1,∴.∴x1=﹣1,,∵k≥1,若k为整数,∴当k=1或k=2时,方程的两个实数根均为整数.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了解方程的方法和整数的整除性质.考点:根的判别式;解一元二次方程-公式法。1077676专题:证明题;分类讨论。分析:(1)分两种情况讨论,当k=0时为一元一次方程,方程有一个实数根;当k≠0时,利用根的判别式计算出△>0,得到方程总有实数根;(2)先判断出方程为一元二次方程,然后利用求根公式求出方程的两个根,再根据方程两根均为负数得出k的取值范围,从而求出k的值.解答:解:(1)分类讨论:若k=0,则此方程为一元一次方程,即﹣3x﹣3=0,∴x=﹣1有根,(1分)若k≠0,则此方程为一元二次方程,∴△=(2k﹣3)2﹣4k(k﹣3)=9>0,(2分)∴方程有两个不相等的实数根,(3分)综上所述,方程总有实数根.(2)∵方程有两个实数根,∴方程为一元二次方程.∵利用求根公式,(4分)得;x2=﹣1,(5分)∵方程有两个负整数根,∴是负整数,即k是3的约数∴k=±1,±3但k=1、3时根不是负整数,∴k=﹣1、﹣3.(7分)点评:此题主要考查了一元二次方程根的判别式,要明确:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根;同时要加以灵活运用.考点:二次函数综合题;待定系数法求一次函数解析式;三角形的面积;相似三角形的判定与性质。1077676专题:综合题。分析:(1)设直线AB的解析式为y=kx+b,将直线与x轴、y轴交点求出,沿x轴翻折,则直线、直线AB交同一A点,与y轴的交点(0,)与点B关于x轴对称,求出K和b;(2)设平移后的抛物线C2的顶点为P(h,0),则抛物线C2解析式为:,求出D点坐标,由DF∥x轴,又点F在直线AB上,解得h的值,就能抛物线C2的解析式;(3)过M作MT⊥FH于T,可证三角形相似,得FT:TM:FM=FG:GA:FA,设FT=3k,TM=4k,FM=5k,求得FN,又由,求得k,故能求得直线m的解析式.解答:解:(1)设直线AB的解析式为y=kx+b,将直线与x轴、y轴交点分别为(﹣2,0),(0,),沿x轴翻折,则直线、直线AB与x轴交于同一点(﹣2,0),∴A(﹣2,0),与y轴的交点(0,)与点B关于x轴对称,∴B(0,),∴,解得,,∴直线AB的解析式为;(2)设平移后的抛物线C2的顶点为P(h,0),则抛物线C2解析式为:=,∴D(0,),∵DF∥x轴,∴点F(2h,),又点F在直线AB上,∴,解得h1=3,,∴抛物线C2的解析式为或;(3)过M作MT⊥FH于T,