最新高考数学知识点归纳总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

精品文档精品文档原命题若p则q否命题若┐p则┐q逆命题若q则p逆否命题若┐q则┐p互为逆否互逆否互为逆否互互逆否互高中数学必修+选修知识点归纳必修1数学知识点第一章:集合与函数概念1、集合三要素:确定性、互异性、无序性。2、常见集合:正整数集合:*N或N,整数集合:Z,有理数集合:Q,实数集合:R.3、并集.记作:BA.交集.记作:BA.全集、补集{|,}UCAxxUxA且(CUA)∩(CUB)=CU(A∪B)(CUA)∪(CUB)=CU(A∩B);BBAAB;简易逻辑:或:有真为真,全假为假。且:有假为假,全真为真。非:真假相反原命题:若P则q;逆命题:若q则p;否命题:若┑P则┑q;逆否命题:若┑q则┑p。常用变换:①)()()()()()(yfxfyxfyfxfyxf.证)()(])[()()()()(yfyxfyyxfxfxfyfyxf②)()()()()()(yfxfyxfyfxfyxf证:)()()()(yfyxfyyxfxf4、设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数xf和它对应,那么就称BAf:为集合A到集合B的一个函数,记作:Axxfy,.5、定义域1分母不等于零被开方大于等于零对数的幂大于零,底大于零不等于值域:利用函数单调性求出所给区间的最大值和最小值,6、函数单调性:(1)定义法:设2121],,[xxbaxx、那么],[)(0)()(21baxfxfxf在上是增函数;],[)(0)()(21baxfxfxf在上是减函数.步骤:取值—作差—变形—定号—判断(2)导数法:设函数)(xfy在某个区间内可导,若0)(xf,则)(xf为增函数;若0)(xf,则)(xf为减函数.7、奇偶性xf为偶函数:xfxf图象关于y轴对称.函数xf为奇函数xfxf图象关于原点对称.若奇函数xfy在区间,0上是递增函数,则xfy在区间0,上也是递增函数.若偶函数xfy在区间,0上是递增函数,则精品文档精品文档xfy在区间0,上是递减函数.函数的几个重要性质:①如果函数xfy对于一切Rx,都有xafxaf或f(2a-x)=f(x),那函数xfy的图象关于直线ax对称.②函数xfy与函数xfy的图象关于直线0x对称;函数xfy与函数xfy的图象关于直线0y对称;函数xfy与函数xfy的图象关于坐标原点对称.二、函数与导数1、几种常见函数的导数①'C0;②1')(nnnxx;③xxcos)(sin';④xxsin)(cos';⑤aaaxxln)(';⑥xxee')(;⑦axxaln1)(log';⑧xx1)(ln'2、导数的运算法则(1)'''()uvuv.(2)'''()uvuvuv.(3)'''2()(0)uuvuvvvv.3、复合函数求导法则复合函数(())yfgx的导数和函数(),()yfuugx的导数间的关系为xuxyyu,即y对x的导数等于y对u的导数与u对x的导数的乘积.解题步骤:分层—层层求导—作积还原导数的应用:1、)(xfy在点0x处的导数的几何意义:函数)(xfy在点0x处的导数是曲线)(xfy在))(,(00xfxP处的切线的斜率)(0xf,相应的切线方程是))((000xxxfyy.切线方程:过点00,Pxy的切线方程,设切点为11,xy,则切线方程为111'yyfxxx,再将P点带入求出1x即可2、函数的极值(----列表法)(1)极值定义:极值是在0x附近所有的点,都有)(xf<)(0xf,则)(0xf是函数)(xf的极大值;极值是在0x附近所有的点,都有)(xf>)(0xf,则)(0xf是函数)(xf的极小值.(2)判别方法:①如果在0x附近的左侧)('xf>0,右侧)('xf<0,那么)(0xf是极大值;②如果在0x附近的左侧)('xf<0,右侧)('xf>0,那么)(0xf是极小值.3、求函数的最值(1)求()yfx在(,)ab内的极值(极大或者极小值)(2)将()yfx的各极值点与(),()fafb比较,其中最大的一个为最大值,最小的一个为极小值。函数凹凸性:若定义在某区间上的函数()fx,对于定义域中任意两点1212,(),xxxx有12121212()()()()()().2222xxfxfxxxfxfxff或则称f(x)为凸(或凹)函数.第二章:基本初等函数(Ⅰ)指数与指数幂的运算1、一般地,如果axn,那么x叫做a的n次方根。其中Nnn,1.2、当n为奇数时,aann;当n为偶数时,aann.3、我们规定:⑴mnmnaa精品文档精品文档1,,,0*mNnma;⑵01naann;4、运算性质:⑴Qsraaaasrsr,,0;⑵Qsraaarssr,,0;⑶Qrbabaabrrr,0,0.指数函数及其性质1、记住图象:1,0aaayx2、性质:对数与对数运算1、指数与对数互化式:logxaaNxN;2、对数恒等式:logaNaN.3、基本性质:01loga,1logaa.4、运算性质:当0,0,1,0NMaa时:⑴NMMNaaalogloglog;⑵NMNMaaalogloglog;⑶MnManaloglog.5、换底公式:abbccalogloglog0,1,0,1,0bccaa.6、重要公式:loglognmaambbn7、倒数关系:abbalog1log1,0,1,0bbaa.对数函数及其性质1、记住图象:1,0logaaxya幂函数1、几种幂函数的图象:函数的应用方程的根与函数的零点1、方程0xf有实根函数xfy的图象与x轴有交点函数xfy有零点.2、零点存在性定理:如果函数xfy在区间ba,上的图象是连续不断的一条曲线,并且有0bfaf,那么函数xfy在区间ba,内有零点,即存在bac,,使得0cf,这个c也就是方程0xf的根.必修2数学知识点空间几何体球的表面积和体积:32344RVRS球球,.1、线面平行:⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简称线线平行,则线面平行)。⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简称线面平行,则线线平行)。2、面面平行:⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简称线面平行,则面面平行)。⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称面面平行,则线线平行)。3、线面垂直:0a1a11y=axoyx0a1a11y=logaxoyx精品文档精品文档⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(简称线线垂直,则线面垂直)。⑶性质:垂直于同一个平面的两条直线平行。4、面面垂直:⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面垂直,则面面垂直)。⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。(简称面面垂直,则线面垂直)。做题技巧:证明线面平行:在平面内寻找与所求平行的直线▲题目中若有中点,看所求平面中的边是否有含某个平行四边形对角线,若有则连接对角线---构成中位线▲利用线面平行证明线线平行证明线面垂直:直线垂直平面内两个相交直线▲题目中给定边的值,利用勾股定理▲直棱柱-棱平行且垂直地面▲垂直投影的直线垂直原线▲两个平面垂直,垂直交线的直线垂直另一个面第三章:直线与方程1、倾斜角与斜率:1212tanxxyyk2、直线方程:⑴点斜式:00xxkyy⑵斜截式:bkxy⑶两点式:121121yyyyxxxx⑷截距式:1xyab⑸一般式:0CByAx3、对于直线:222111:,:bxkylbxkyl有:⑴212121//bbkkll;⑵1l和2l相交12kk;⑶1l和2l重合2121bbkk;⑷12121kkll.4、对于直线:(重点)0:,0:22221111CyBxAlCyBxAl有:⑴1221122121//CBCBBABAll;(两直线平行,系数交叉相乘差为零)⑵1l和2l相交1221BABA;⑶1l和2l重合12211221CBCBBABA;⑷0212121BBAAll.(两直线垂直,对应相乘和相等)5、两点间距离公式:(重点)21221221yyxxPP6、点到直线距离公式:(重点)2200BACByAxd7、两平行线间的距离公式:(重点)1l:01CByAx与2l:02CByAx平行,则2221BACCd第四章:圆与方程1、圆的方程:⑴标准方程:222rbyax其中圆心为(,)ab,半径为r.精品文档精品文档⑵一般方程:022FEyDxyx.其中圆心为(,)22DE,半径为22142rDEF.2、直线与圆的位置关系直线0CByAx与圆222)()(rbyax的位置关系有三种:0相离rd;0相切rd;0相交rd.弦长公式:(重点)222drl222121212()()1||xxyykxx3、空间中两点间距离公式:21221221221zzyyxxPP必修3数学知识点算法案例:①辗转相除法—结果是以相除余数为0而得到利用辗转相除法求最大公约数的步骤如下:ⅰ):用较大的数m除以较小的数n得到一个商0S和一个余数0R;ⅱ):若0R=0,则n为m,n的最大公约数;若0R≠0,则用除数n除以余数0R得到一个商1S和一个余数1R;ⅲ):若1R=0,则1R为m,n的最大公约数;若1R≠0,则用除数0R除以余数1R得到一个商2S和一个余数2R;……依次计算直至nR=0,此时所得到的1nR即为所求的最大公约数。②更相减损术—结果是以减数与差相等而得到利用更相减损术求最大公约数的步骤如下:ⅰ):任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。ⅱ):以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。③进位制十进制数化为k进制数—除k取余法k进制数化为十进制数第二章:统计1、抽样方法:①简单随机抽样(总体个数较少)②系统抽样(总体个数较多)③分层抽样(总体中差异明显)注意:在N个个体的总体中抽取出n个个体组成样本,每个个体被抽到的机会(概率)均为Nn。2、总体分布的估计:⑴一表二图:①频率分布表——数据详实②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势注:总体分布的密度曲线与横轴围成的面积为1。⑵茎叶图:(重点)①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等。②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。3、总体特征数的估计:⑴平均数:nxxxxxn321;取值为nxxx,,,21的频率分

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功