-1-第1章绪论相位测量仪是电力部门、工厂和矿山、石油化工、冶金系统进行二次回路检查的理想的高精度仪表。尤其适用于电能计量、用电检查、继电保护、差动检测、电力建设和变送电工程等。是电力系统各部门的必备仪器之一。1.1课题研究背景在电子测量技术中,相位测量时最基本的测量手段之一,相位测量仪式电子领域的常用仪器。随着相位测量技术广泛应用于科学研究、实验、生产实践等各个领域,对相位测量技术的要求也向高精度高智能化方向发展,在低频范围内,相位测量在电力、机械等部门具有非常重要的意义。基于数字式相位测量仪的高精度、高智能化、直观化的特点,工业上常常用此进行低频信号相位差的精确测量。同频信号间相位差的测量在电力系统、工业自动化、智能控制及通信、电子、地球物理勘探等许多领域都有着广泛的应用。尤其在工业领域中,相位不仅是衡量安全的重要依据,还可以为节约能源提供参考。1.2课题研究内容1.2.1相位测量相位差的测量原理主要有三种:过零检测法——基于对信号波形的变换比较;倍乘法——基于对傅氏级数的运算;矢量法——基于对三角函数的运算。过零点检测法是一种将相位测量变为时间测量的方法。其原理是将基准信号的过零时刻与被测信号的过零时刻进行比较,由二者之间的时间间隔与被测信号周期的比值推算出两信号之间的相位差.这种方法的特点是电路简单,且对启动采样电路要求不高,同时还具有测量分辨率高、线性好和易数字化等优点.倍乘法:任何一个周期函数都可以用傅氏级数表示,即用正弦函数和余弦函数构成的无穷级数来表示,倍乘法测量相位差所用的运算器是一个乘法器,2个信号是频-2-率相同的正弦函数,相位差为,运算结果经过一个积分电路,可以得到一个直流电压coskV,电路的输出和被测信号相位差的余弦成比例,因此其测量范围在45°以内,为使测量范围扩展到360°,需要附加一些电路才可以实现.倍乘法由于应用了积分环节,可以滤掉信号波形中的高次谐波,有效抑制了谐波对测量准确度的影响.矢量法:任何一个正弦函数都可以用矢量来表示,如各个正弦信号幅度相等、频率相同,运算器运用减法器合成得到矢量的模2/sin2EV.矢量法用于测量小角度范围时,灵敏度较好,可行度也较高;但在180°附近灵敏度降低,读数困难且不准确.由于系统输出为一余弦或正弦函数,因此这种方法适用于较宽的频带范围。上述3种测量相位的方法各有优势,从测量范围、灵敏度、准确度、频率特性和谐波的敏感性等技术指标来看,过零检测法的输出正比于相位差的脉冲数,且易于实现数字化和自动化,故本研究采用过零检测法。1.2.2基本要求本设计研究了一种可测20Hz-20kHz内任意频率数字式相位测量仪的设计方法。主要内容是以AT89C51为控制核心,实现对音频范围内的正弦交流信号的相位的测量,可测的信号相位差在0~360度范围内,测量精度可达0.1度。两路信号(同频、不同相,一路为待测信号,另一路为参考信号)通过过零比较器电路整形成矩形波信号,再通过鉴相器,得到相位差信号。这样就构成了相位测量系统的测量电路。再将该相位差信号送入单片机的外部中断端口,通过单片机对数据的处理,最后方可得到所要测量的相位差,并在液晶上显示出测量结果。-3-第2章方案论证本设计中,相位测量仪主要是对被测网络的输入、输出信号的相位差进行测量。这样的两路待测信号为同频不同相的正弦交流信号,频率范围为20Hz-20kHz,幅度为0V~500V。相位差测量的基本原理为:对信号波形的变换、比较及相关数学运算。即对于被测信号是同频不同相的两路正弦交流信号,为了准确地测量出该相位差,需要对输入信号的波形进行整形,本设计利用LM339组成整形电路,使输入信号变成矩形波信号,再经异或门组成的鉴相器电路,输出即为相位差信号,再结合单片机的数据处理功能,最后通过液晶即可显示出该相位差。由于单片机的工作电压在5V左右,所以在进行相位测量前,还需将被测信号进行分档降压处理。2.1自动量程控制原理论证本设计中,待测信号是0V~500V正弦交流信号,要想进行相位测量,则需先将该信号进行降压处理。常见的交流降压法有降压变压器降压法、电容降压法、电感降压法、纯电阻电路降压法,考虑到本设计中的降压过程不得引入新的相移,否则影响下一步的相位测量的精准度,此处选择最后一种方法,即纯电阻电路的降压法,该电路实现起来直观、简易且误差小。本设计中,将待测信号分成三个档位:500V、50V、5V。结合继电器的自动开关作用,即当待测信号的满足其中某一档位的指标时,则相应的被控电路导通,从而自动量程控制电路转入相位测量电路进行后续数据处理等功能。2.2相位测量原理论证由数学关系可知,时间差和相位差有如下关系::360:TT(2.1)由此可得:360)/(TT(2.2)-4-其中,T是相位差对应的时间差,T是信号周期。式2.2表明,相位差与时间差T有着一一对应的关系,只要通过测量时间差T及信号周期T,就可以求得相位差,这就是相位差的基本测量原理。显然,相位差的测量本质上是时间的测量。而时间的测量方法有很多种,本设计结合51单片机的特点,采用过零点检测法。其原理是将基准信号通过零的时刻与被测信号通过零的时刻进行比较,由二者之间的时间间隔推算出两信号之间的相位差。这种方法的特点是电路简单,对启动电路要求不高,同时该方法还具有测量分辨率高、线性好、易于数学化等优点。将该相位差信号送入单片机的外部中断接口,对该信号的脉冲宽度进行计数,从而得到对应于相位差的时间差和周期,再根据上述求解相位差的公式便可得到所求,并由液晶显示最终测得的相位差。-5-第3章硬件设计本章主要阐述了系统各单元的硬件电路设计思想及具体硬件组成,本设计共包括以下模块:单片机主控电路、显示电路、稳压电路、自动量程控制电路、AD转换电路、继电器驱动电路、超限报警电路及相位测量电路共8个部分。系统总体框图如图3.1所示。图3.1系统总体框图3.1主控电路设计这部分是由单片机、晶振电路、复位电路组成。本设计中充分利用了单片机较强的运算能力和控制能力这一特点,使用单片机外部中断INT0、INT1接收外部送来的相位差信号,并在单片机内部完成相应的处理及相关运算。图3.2为AT89C51主控电路图。单片机主控电路输入信号被测网络时差测量电路稳压电路显示电路-6-图3.2主控电路图3.1.1AT89C51单片机本设计中采用的核心控制器是AT89C51,它是美国ATMEL公司生产的一款低电压,高性能CMOS8位单片机,片内含4K字节FLASH可反复擦写的只读程序存储器(EPROM)和128字节的随机数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,与工业标准的MCS-51指令集和输出管脚相兼容,片内内置通用8位中央处理器(CPU)和Flash存储单元,功能强大的AT89C51单片机可提供高性价比的应用场合,可灵活应用于各种控制领域。因此,在这里我选用AT89C51单片机来完成。3.1.1.1主要性能参数:•与MCS-51产品指令系统完全兼容•4K字节可编程Flash存储器•1000次擦写周期•全静态工作:0hz-24hz•三级加密程序存储器•128×8位内部RAM-7-•32个可编程I/O口线•2个16位定时/计数器•5个中断源•可编程串行UART通道•低功耗空闲和掉电模式3.1.1.2管脚说明:VCC:供电电压。GND:接地。P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P0口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须接上拉电阻。P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为低八位地址接收。P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。-8-P3口也可作为AT89C51的一些特殊功能口,如表1所示:表1P3口第二功能表管脚功能P3.0RXD(串行输入口)P3.1TXD(串行输出口)P3.2/INT0(外部中断0)P3.3/INT1(外部中断1)P3.4T0(记时器0外部输入)P3.5T1(记时器1外部输入)P3.6/WR(外部数据存储器写选通)P3.7/RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的低位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。-9-/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。XTAL2:来自反向振荡器的输出。振荡器特性:XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。3.1.2晶振电路的设计晶振是一种能把电能和机械能相互转化,产生稳定、精确的共振频率的元件。它结合单片机内部电路产生单片机所需的时钟频率。单片机晶振提供的时钟频率越高,那么单片机运行速度就越快,单片接的一切指令的执行都是建立在单片机晶振提供的时钟频率的基础之上的。在通常工作条件下,普通晶振频率绝对精度可达百万分之五十。AT89C5l中有一个用于构成内部振荡器的高量程反相放大器,引脚XTAL1和XTAL2分别是该放大器的输入端和输出端。这个放大器与作为反馈元件的片外石英晶体或陶瓷谐振器一起构成自激振荡器,振荡电路参见图3.3。图3.3晶振电路外接石英晶体(或陶瓷谐振器)及电容C1、C2接在放大器的反馈回路中构成并联振荡电路。对外接电容C1、C2虽然没有十分严格的要求,但电容容量的大小会轻-10-微影响振荡频率的高低、振荡器工作的稳定性、起振的难易程序及温度稳定性,如果使用石英晶体,我们推荐电