2016-2017学年山东省临沂市兰陵县第一片区七年级(上)第一次月考数学试卷一、选择题(本大题共13小题,共39分)将你认为正确的选项填写在对应的框中1.﹣5的绝对值是()A.5B.﹣5C.D.﹣2.在﹣2,+3.5,0,,﹣0.7,11中,负分数有()A.l个B.2个C.3个D.4个3.下列说法:①不存在最大的负整数;②两个数的和一定大于每个加数;③若干个有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;④已知ab≠0,则a+b的值不可能为0.其中正确的个数是()A.0个B.1个C.2个D.3个4.如果规定符号“⊗”的意义为a⊗b=3(a+b),则2⊗(﹣3)的值是()A.6B.﹣6C.3D.﹣35.下列说法中正确的是()A.正数和负数互为相反数B.任何一个数的相反数都与它本身不相同C.任何一个数都有它的相反数D.数轴上原点两旁的两个点表示的数互为相反数6.﹣a一定是()A.正数B.负数C.正数或负数D.正数或零或负数7.一个数和它的倒数相等,则这个数是()A.1B.﹣1C.±1D.±1和08.如果|a|=﹣a,下列成立的是()A.a>0B.a<0C.a≥0D.a≤09.小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12元,存进25元,取出12.5元,取出2元,这时银行现款增加了()A.12.25元B.﹣12.25元C.10元D.﹣12元10.绝对值不大于5.1的整数有()A.11个B.12个C.22个D.23个11.下列说法中,错误的有()①是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥﹣1是最小的负整数.A.1个B.2个C.3个D.4个12.在某次实验中,“蛟龙号”载人潜水器停在海面下5000米处,先下降2062米,又上升1300米,这是“蛟龙号”载人潜水器停在海面下()A.4362米处B.4762米处C.5362米处D.5762米处13.已知|x|=3,|y|=7,且xy<0,则x+y的值等于()A.10B.4C.﹣4D.4或﹣4二、填空题(本大题共11小题,共33分)14.已知|a﹣1|+|b+3|=0,则a=,b=.15.﹣3﹣(﹣5)=.16.若a>0,b>0,则ab0;若a>0,b<0,则ab0.17.点A在数轴上表示的数是﹣2,将点A在数轴上移动3个单位长度后表示的数是.18.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于.19.由书中知识,+5的相反数是﹣5,﹣5的相反数是5,那么数x的相反数是,数﹣x的相反数是.20.比﹣3小5的数是,比﹣5小﹣7的数是,比0小﹣5的数是.21.化简(1)+(+6)=;(1)﹣(﹣11)=;(1)﹣[+(﹣7)]=.22.若x﹣1的相反数是﹣5,则x=.23.如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是.(用含m,n的式子表示)24.已知|a|=4,|b|=3,且a+b<0,则a﹣2b=.三、计算题(本大题共1小题,每题5分,共25分)25.计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7)(2)﹣8+4÷(﹣2)(3)﹣9×(﹣11)÷3÷(﹣3)(4)(﹣)×(+)÷(﹣)×(﹣);(5)30﹣(+﹣)×(﹣36).四、解答题(本大题共两小题,第26题12分.第27题11分.共23分)26.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,﹣3,+4,+2,﹣8,+13,﹣2,+12,+8,+5.(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.2升,问从A地出发到收工时共耗油多少升?27.阅读以下材料,完成相关的填空和计算(1)根据倒数的定义我们知道,若(a+b)÷c=﹣3,则c÷(a+b)=;(2)计算(﹣+﹣)÷(﹣);(3)根据以上信息可知:﹣÷(﹣+﹣).2016-2017学年山东省临沂市兰陵县第一片区七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共13小题,共39分)将你认为正确的选项填写在对应的框中1.﹣5的绝对值是()A.5B.﹣5C.D.﹣【考点】绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.2.在﹣2,+3.5,0,,﹣0.7,11中,负分数有()A.l个B.2个C.3个D.4个【考点】有理数.【分析】根据负数的定义先选出负数,再选出分数即可.【解答】解:负分数是﹣,﹣0.7,共2个.故选:B.3.下列说法:①不存在最大的负整数;②两个数的和一定大于每个加数;③若干个有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;④已知ab≠0,则a+b的值不可能为0.其中正确的个数是()A.0个B.1个C.2个D.3个【考点】有理数的乘法;有理数的加法.【分析】依据有理数的分类以及有理数的加法法则、乘法法则进行判断即可.【解答】解:①最大的负整数是﹣1,故①错误;②两个负数的和小于每一个加数,故②错误;③当其中一个因数为零时,积为零,故③错误;④当a、b互为相反数是,a+b=0,故④错误.故选:A.4.如果规定符号“⊗”的意义为a⊗b=3(a+b),则2⊗(﹣3)的值是()A.6B.﹣6C.3D.﹣3【考点】有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:2⊗(﹣3)=3×(2﹣3)=﹣3,故选D5.下列说法中正确的是()A.正数和负数互为相反数B.任何一个数的相反数都与它本身不相同C.任何一个数都有它的相反数D.数轴上原点两旁的两个点表示的数互为相反数【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数是互为相反数;0的相反数是0.即一对相反数符号不同而绝对值相等判断即可.【解答】解:A、例如1与﹣2,它们一个是正数和一个是负数,但是他们不是互为相反数,故本选项错误;B、0的相反数是0,故本选项错误;C、根据相反数的概念,任何一个数都有相反数,故本选项正确;D、数轴上原点两旁的两个点表示的数﹣5,4,但﹣5,4不是互为相反数,故本选项错误.故选C.6.﹣a一定是()A.正数B.负数C.正数或负数D.正数或零或负数【考点】相反数;正数和负数.【分析】讨论a的取值,①a<0;②a=0;③a>0,由此可得出答案.【解答】解:①若a<0,则﹣a为正数;②若a=0,则﹣a=0;③若a>0,则﹣a为正数.故选D.7.一个数和它的倒数相等,则这个数是()A.1B.﹣1C.±1D.±1和0【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵1×1=1,(﹣1)×(﹣1)=1,∴一个数和它的倒数相等的数是±1.故选C.8.如果|a|=﹣a,下列成立的是()A.a>0B.a<0C.a≥0D.a≤0【考点】绝对值.【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【解答】解:如果|a|=﹣a,即一个数的绝对值等于它的相反数,则a≤0.故选D.9.小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12元,存进25元,取出12.5元,取出2元,这时银行现款增加了()A.12.25元B.﹣12.25元C.10元D.﹣12元【考点】有理数的加减混合运算;正数和负数.【分析】将小明的储蓄业务记为;取出为﹣,存进为+,就可以建立有理数的混合计算式子,求出其结果就可以了.【解答】解:设取出为﹣,存进为+,由题意,得﹣9.5+5﹣8+12+25﹣12.5﹣2=﹣9.5﹣8﹣12.5﹣2+5+12+25=﹣32+42=10.故选C.10.绝对值不大于5.1的整数有()A.11个B.12个C.22个D.23个【考点】有理数.【分析】根据绝对值表示数在数轴上对应的点到原点的距离即可解答.【解答】解:绝对值不大于5.1的整数有:±1,±2,±3,±4,±5和0共有11个.故选A.11.下列说法中,错误的有()①是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥﹣1是最小的负整数.A.1个B.2个C.3个D.4个【考点】有理数.【分析】本题根据有理数的基本定义,对各项进行判定即可求得答案.【解答】解:①是负分数;正确;②1.5不是整数;正确,是分数;③非负有理数不包括0;错误,0也为有理数;④整数和分数统称为有理数;正确;⑤0是最小的有理数;错误,负数也为有理数;⑥﹣1是最小的负整数,错误,﹣1为最大的负整数;∴③⑤⑥三项错误.故选:C.12.在某次实验中,“蛟龙号”载人潜水器停在海面下5000米处,先下降2062米,又上升1300米,这是“蛟龙号”载人潜水器停在海面下()A.4362米处B.4762米处C.5362米处D.5762米处【考点】正数和负数.【分析】根据题意得出下降2062米的位置,进而再利用上升1300米得出答案.【解答】解:∵“蛟龙号”载人潜水器停在海面下5000米处,先下降2062米,∴此时在海面下7062米处,∵又上升1300米,∴这时“蛟龙号”载人潜水器停在海面下:7062﹣1300=5762(m).故选:D.13.已知|x|=3,|y|=7,且xy<0,则x+y的值等于()A.10B.4C.﹣4D.4或﹣4【考点】绝对值;有理数的加法;有理数的乘法.【分析】首先根据绝对值的性质可得x=±3,y=±7,再根据条件xy<0可得此题有两种情况∴①x=3,y=﹣7,②x=﹣3,y=7,再分别计算出x+y即可.【解答】解:∵|x|=3,|y|=7,∴x=±3,y=±7,∵xy<0,∴①x=3,y=﹣7,x+y=﹣4;②x=﹣3,y=7,x+y=4,故选:D.二、填空题(本大题共11小题,共33分)14.已知|a﹣1|+|b+3|=0,则a=1,b=﹣3.【考点】非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0求得a和b的值.【解答】解:根据题意得:a﹣1=0,b+3=0,解得:a=1,b=﹣3.故答案是:1,﹣3.15.﹣3﹣(﹣5)=2.【考点】有理数的减法.【分析】根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算.【解答】解:﹣3﹣(﹣5)=﹣3+5=2.16.若a>0,b>0,则ab>0;若a>0,b<0,则ab<0.【考点】有理数的乘法.【分析】利用有理数乘法法则判断即可得到结果.【解答】解:若a>0,b>0,则ab>0;若a>0,b<0,则ab<0.故答案为:>;<.17.点A在数轴上表示的数是﹣2,将点A在数轴上移动3个单位长度后表示的数是﹣5或1.【考点】数轴.【分析】由于点A移动的方向不确定,故应分向左移与向右移两种情况讨论.【解答】解:若点A向左移3个单位,则表示的数是﹣2﹣3=﹣5;若点A向右移3个单位,则表示的数是﹣2+3=1.故答案为:﹣5或1.18.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于0.【考点】有理数的加减混合运算.【分析】先根据有理数的相关知识确定a、b、c的值,然后将它们代入a+b+|c|中求解.【解答】解:由题意知:a=1,b=﹣1,c=0;所以a+b+|c|=1﹣1+0=0.故答案为:0.19.由书中知识,+5的相反数是﹣5,﹣5的相反数是5,那么数x的相反数是﹣x,数﹣x的相反数是x.【考点】相反数.【分析】直接利用相反数的定义分别分析得出答案.【解答】解:∵+5的相反数是﹣5,﹣5的相反数是5,∴数x的相反数是:﹣x,数﹣x的相反数是:x.故答案为:﹣x,x.20.比﹣3小5的数是﹣8,比﹣5小﹣7的数是2,比0小﹣5的数是5.【考点】有理数的减法.【分析】根据题意列出算式,计算即可得到结果.【解答】解:﹣3﹣5=﹣8;﹣5﹣(﹣7)=﹣5+7=2;0﹣(﹣5)=0+5=5,则比﹣3小5的数是﹣8,比﹣5小﹣7的数是2,比0小﹣5的数是5.故答案为