第四章几何图形初步检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2014•山东滨州中考)如图,OB是∠AOC的角平分线,OD是∠COE的角平分线.如果∠AOB=40°,∠COE=60°,则∠BOD的度数为()A.50°B.60°C.65°D.70°2.(2013•浙江温州中考)下列各图中,经过折叠能围成一个立方体的是()3.在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是()A.2㎝B.0.5㎝C.1.5㎝D.1㎝4.(2014•山东济宁中考)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边5.如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B6.(2014•广东汕尾中考)如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()第5题图第6题图A.我B.中C.国D.梦7.如图所示的立体图形从上面看到的图形是()8.(2013•六盘水中考)直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与∠1互余的角有几个()A.2个B.3个C.4个D.6个第8题图9.若∠=40.4°,∠=40°4′,则∠与∠的关系是()A.∠=∠B.∠>∠C.∠<∠D.以上都不对10.下列叙述正确的是()A.180°的角是补角B.110°和90°的角互为补角C.10°、20°、60°的角互为余角D.120°和60°的角互为补角二、填空题(每小题3分,共24分)11.(2013•山东枣庄中考)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为_________.12.(山东菏泽中考)已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC=_______cm.13.若一个角的补角是这个角的余角的3倍,则这个角的度数是.14.已知直线上有A,B,C三点,其中,则_______.15.计算:__________.16.一副三角板如图所示放置,则∠AOB=_______.第16题图17.如图,AB⊥CD于点B,BE是∠ABD的平分线,则∠CBE=度.第7题图18.如图,OC⊥AB,OD⊥OE,图中与∠1互余的角是.三、解答题(共46分)19.(6分)将下列几何体与它的名称连接起来.20.(6分)如图所示,线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求线段EF的长.21.(6分)如图所示,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长.(2)若C为线段AB上任意一点,满足,其他条件不变,你能猜想出MN的长度吗?并说明理由.(3)若C在线段AB的延长线上,且满足,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.22.(6分)如图所示由四个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.23.(6分)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图AEDBC第17题图第18题图OAB1DEC第21题图左面正面上面第22题图第23题图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).24.(8分)火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票.(1)共有多少种不同的车票?(2)如果共有n(n≥3)个站点,则需要多少种不同的车票.25.(8分)如图所示,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.第25题图第四章几何图形初步检测题参考答案1.D解析:∵OB是∠AOC的角平分线,OD是∠COE的角平分线,∠AOB=40°,∠COE=60°,∴∠BOC=∠AOB=40°,∠COD=12∠COE=12×60°=30°,∴∠BOD=∠BOC+∠COD=40°+30°=70°.2.A解析:A.可以折叠成一个正方体;B项含有“凹”字格,故不能折叠成一个正方体;C.折叠后有两个面重合,缺少一个底面,所以也不能折叠成一个正方体;D项含有“田”字格,故不能折叠成一个正方体.故选A.3.D解析:因为是顺次取的,所以AC=8cm.因为O是线段AC的中点,所以OA=OC=4cm,OB=AB-OA=5-4=1(cm).故选D.4.C解析:要想缩短两地之间的里程,就尽量使两地在一条直线上,因为两点之间线段最短.5.B解析:本题考查了“两点之间,线段最短”.6.D解析:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,面“你”与面“梦”相对.7.C解析:从上面看为C,从前面看为D.8.B解析:与∠1互余的角有∠2,∠3,∠4;一共3个.故选B.9.B解析:因为40.4°=40°24′,所以∠∠.10.D解析:180°的角是平角,所以A不正确;,所以B不正确;互为余角是指两个角,所以C不正确;120°+60°=180°,所以D正确.11.24解析:挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则这个零件的表面积是2×2×6=24.故答案为24.12.5或11解析:根据题意,点C可能在线段AB上,也可能在线段AB的延长线上.若点C在线段AB上,则AC=AB-BC=8-3=5(cm);若点C在线段AB的延长线上,则AC=AB+BC=8+3=11(cm).故答案为5或11.13.45°解析:设这个角为,根据题意可得,所以,所以.14.3cm或7cm解析:当三点按的顺序排列,则;当三点按的顺序排列时,.15.156°46′54″解析:原式=179°59′60″-23°13′6″156°46′54″.16.105°解析:根据三角板的度数可得:∠2=45°,∠1=60°,∠AOB=∠1+∠2=45°+60°=105°.第16题答图17.135解析:由题意可知∠ABC=∠ABD=90°,∠ABE=45°,所以.18.∠COD、∠BOE解析:因为OC⊥AB,所以∠1+∠DOC=90°.又因为OD⊥OE,所以∠1+∠BOE=90°.所以∠1与∠DOC互余,也与∠BOE互余.19.解:第19题答图20.解:∵AD=6cm,AC=BD=4cm,∴4462(cm)BCACBDAD.∴624(cm)ABCDADBC.又∵E、F分别是线段AB、CD的中点,∴11,22EBABCFCD,∴111()2(cm).222EBCFABCDABCD∴224(cm).EFEBBCCF答:线段EF的长为4cm.21.解:(1)如题图,∵AC=8cm,CB=6cm,∴8614(cm).ABACCB又∵点M、N分别是AC、BC的中点,∴11,,22MCACCNBC∴1111()7(cm).2222MNACCBACCBAB答:MN的长为7cm.(2)若C为线段AB上任意一点,且满足,其他条件不变,则cm.理由是:∵点M、N分别是AC、BC的中点,∴11,.22MCACCNBC∵cm,ACCBa∴1111(c)222m.2MNACCBACCBa(3)解:如图.∵点M、N分别是AC、BC的中点,∴11,.22MCACNCBC∵cm,ACCBb∴22.解:如图所示.23.解:答案不唯一,如图所示.24.解:(1)由不同的车站来往需要不同的车票,知共有6×5=30(种)不同的车票.(2)个站点需要种不同的车票.25.解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°-∠AOB=180°-120°=60°.(2)∠DOC=∠BOC=×70°=35°,∠AOE=∠AOC=×50°=25°.第23题答图第21题答图∠DOE与∠AOB互补.理由如下:因为∠DOC=35°,∠AOE=25°,所以∠DOE=∠DOC+∠COE=∠DOC+∠AOE=60°.所以∠DOE+∠AOB=60°+120°=180°,所以∠DOE与∠AOB互补.