天津市和平区2016-2017学年七年级(上)期中数学试卷(解析版)一、选择题(共12小题,每小题3分,满分36分)1.如果+160元表示增加160元,那么﹣60元表示()A.增加100元B.增加60元C.减少60元D.减少220元2.用四舍五入法把3.8963精确到百分位得到的近似数是()A.3.896B.3.900C.3.9D.3.903.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为()A.0.35×108B.3.5×107C.3.5×106D.35×1054.在数轴上表示﹣5的点离开原点的距离等于()A.5B.﹣5C.±5D.105.将等式2﹣x+=1变形,得()A.2﹣x+1=1B.6﹣x+1=3C.6﹣x+1=1D.2﹣x+1=36.下列去括号正确的是()A.+(a﹣b+c)=a+b+cB.+(a﹣b+c)=﹣a+b﹣cC.﹣(a﹣b+c)=﹣a+b﹣cD.﹣(a﹣b+c)=﹣a+b+c7.已知方程3x+m=3﹣x的解为x=﹣1,则m的值为()A.13B.7C.﹣10D.﹣138.下列计算结果为0的是()A.﹣42﹣42B.﹣42+(﹣4)2C.(﹣4)2+42D.﹣42﹣4×49.下列各组整式中,不是同类项的是()A.3x2y与﹣x2yB.﹣与0C.xyz3与﹣xyz3D.2x3y与2xy310.如果|﹣3x|=3x,则x的取值范围是()A.x>0B.x≥0C.x≤0D.x<011.已知整式x2+x+2的值是6,那么整式4x2+4x﹣6的值是()A.10B.16C.18D.﹣1212.如果a<0,﹣1<b<0,则a,ab,ab2按由小到大的顺序排列为()A.a<ab<ab2B.a<ab2<abC.ab<ab2<aD.ab2<a<ab二、填空题(共6小题,每小题3分,满分18分)13.5的底数是,指数是,结果是.14.绝对值不大于5的整数共有个.15.若3x2﹣4x﹣5=7,则x2﹣x=.16.若(a+1)2+|b﹣2|=0,化简a(x2y+xy2)﹣b(x2y﹣xy2)的结果为.17.大客车上原有(3a﹣b)人,中途下车一半人,又上车若干人,使车上共有乘客(8a﹣5b)人,则上车的乘客是人,当a=10,b=8时,上车的乘客是人.18.观察:10×10=102,102×10=103,102×103=105,(1)109×1010=;(2)10m×10n=;运用以上所得结论计算:(2.5×104)×(5×105)=(结果用科学记数法表示)三、解答题(共7小题,满分66分)19.(7分)画出数轴,且在数轴上表示出下列各数:﹣,3,0,﹣2,2.25,﹣3并解答下列问题:(1)用“<”号把这些数连接起来;(2)求这些数中﹣,0,2.25的相反数;(3)求这些数的绝对值的和.20.(16分)计算:(1)(﹣3)﹣(﹣2.4)+(﹣)﹣(+4)(2)1÷(1﹣8×)+÷(3)﹣32×(﹣)3﹣(+﹣)÷(﹣)(4)(﹣1)4﹣{﹣[()2+0.4×(﹣1)]÷(﹣2)2}.21.(6分)计算:(1)4x﹣2(1﹣x)+4(2﹣)(2)(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)22.(7分)我国出租车收费标准因地而异,甲城市为:起步价7元,3千米后每千米收费1.7元;乙城市为:起步价10元,3千米后每千米收费1.2元.(1)试问:在甲、乙两城市乘坐出租车x(x>3)千米各收费多少元;(2)如果在甲、乙两城市乘坐出租车的路程都为8千米,那么那个城市的收费高些?高多少?23.(8分)已知在数轴上的位置如图所示:(1)填空:a与c之间的距离为;(2)化简:|a+1|﹣|c﹣b|+|b﹣1|;(3)若a+b+c=0,且b与﹣1的距离和c与﹣1的距离相等,求﹣2a2+2b﹣4c﹣(﹣a+5b﹣c)的值.24.(10分)将连续的奇数1、3、5、7、9、…排成如图的数表:(1)十字框的5个数的和与中间的数23有什么关系?若将十字框上下左右平移,可框住另外5个数,这5个数还有这种规律吗?(2)设十字框中中间的数为a,用含a的式子表示十字框中的5个数之和;(3)十字框中的5个数的和能等于2016吗?若能,请写出这5个数,若不能,说明理由.25.(12分)已知a、b、c、d是整数,且满足a+b=c,b+c=d,c+d=a.(1)若a与b互为相反数,求a+b+c+d的值;(2)若b是正整数,求a+b+c+d的最大值.2016-2017学年天津市和平区七年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.如果+160元表示增加160元,那么﹣60元表示()A.增加100元B.增加60元C.减少60元D.减少220元【考点】正数和负数.【分析】利用相反意义量的定义判断即可.【解答】解:如果+160元表示增加160元,那么﹣60元表示减少60元,故选C【点评】此题考查了正数与负数,熟练掌握相反意义量的定义是解本题的关键.2.用四舍五入法把3.8963精确到百分位得到的近似数是()A.3.896B.3.900C.3.9D.3.90【考点】近似数和有效数字.【分析】根据题目中的要求和四舍五入法可以解答本题.【解答】解:∵3.8963≈3.90,∴3.8963精确到百分位得到的近似数是3.90,故选D.【点评】本题考查近似数和有效数字,解题的关键是明确近似数和有效数字的意义.3.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为()A.0.35×108B.3.5×107C.3.5×106D.35×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,因为350万共有7位,所以n=7﹣1=6.【解答】解:350万=3500000=3.5×106.故选C.【点评】本题考查了科学记数法表示较大的数,准确确定n是解题的关键.4.在数轴上表示﹣5的点离开原点的距离等于()A.5B.﹣5C.±5D.10【考点】数轴.【分析】借助于数轴上两点间距离的问题,直接运用概念就可以求解.【解答】解:根据数轴上两点间距离,得﹣5的点离开原点的距离等于5.故选A.【点评】本题考查数轴上两点间距离,解决本题的关键是熟记数轴上两点间的距离.5.将等式2﹣x+=1变形,得()A.2﹣x+1=1B.6﹣x+1=3C.6﹣x+1=1D.2﹣x+1=3【考点】等式的性质.【分析】根据等式的性质知,在等式的两边同时乘以3,等式仍成立.【解答】解:在等式2﹣x+=1的两边同时乘以3,得6﹣x+1=3,故选:B.【点评】本题主要考查了等式的基本性质,等式的两边同时加上或减去同一个数或字母,等式仍成立;等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.6.下列去括号正确的是()A.+(a﹣b+c)=a+b+cB.+(a﹣b+c)=﹣a+b﹣cC.﹣(a﹣b+c)=﹣a+b﹣cD.﹣(a﹣b+c)=﹣a+b+c【考点】去括号与添括号.【分析】各项利用去括号法则计算得到结果,即可做出判断.【解答】解:A、+(a﹣b+c)=a﹣b+c,本选项错误;B、+(a﹣b+c)=a﹣b+c,本选项错误;C、﹣(a﹣b+c)=﹣a+b﹣c,本选项正确;D、﹣(a﹣b+c)=﹣a+b﹣c,本选项错误,故选C【点评】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.7.已知方程3x+m=3﹣x的解为x=﹣1,则m的值为()A.13B.7C.﹣10D.﹣13【考点】一元一次方程的解.【分析】把x=﹣1代入方程计算即可求出m的值.【解答】解:把x=﹣1代入方程得:﹣3+m=3+1,解得:m=7,故选B【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.8.下列计算结果为0的是()A.﹣42﹣42B.﹣42+(﹣4)2C.(﹣4)2+42D.﹣42﹣4×4【考点】有理数的乘方.【分析】各项计算得到结果即可做出判断.【解答】解:A、﹣42﹣42=﹣16﹣16=﹣32,本选项不合题意;B、﹣42+(﹣4)2=﹣16+16=0,本选项符合题意;C、(﹣4)2+42=16+16=32,本选项不合题意;D、﹣42﹣4×4=﹣16﹣16=﹣32,本选项不合题意.故选B.【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.9.下列各组整式中,不是同类项的是()A.3x2y与﹣x2yB.﹣与0C.xyz3与﹣xyz3D.2x3y与2xy3【考点】同类项.【分析】关键同类项的定义进行选择即可.【解答】解:A、3x2y与﹣x2y是同类项,故错误;B、﹣与0是同类项,故错误;C、xyz3与﹣xyz3是同类项,故错误;D、2x3y与2xy3不是同类项,故正确;故选D.【点评】本题考查了同类项,熟练掌握同类项的定义:所含字母相同,相同字母的指数也相同的项叫同类项.10.如果|﹣3x|=3x,则x的取值范围是()A.x>0B.x≥0C.x≤0D.x<0【考点】绝对值.【分析】根据已知算式得出3x≥0,求出即可.【解答】解:∵|﹣3x|=3x,∴3x≥0,∴x≥0,故选B.【点评】本题考查了绝对值的应用,能根据已知算式得出3x≥0是解此题的关键.11.已知整式x2+x+2的值是6,那么整式4x2+4x﹣6的值是()A.10B.16C.18D.﹣12【考点】代数式求值.【分析】先求得x2+x的值,然后再求得4x2+4x的值,最后求得代数式的值即可.【解答】解:∵x2+x+2=6,∴x2+x=4.∴4x2+4x=16.∴4x2+4x﹣6=16﹣6=10.故选:A.【点评】本题主要考查的是求代数式的值,求得4x2+4x的值是解题的关键.12.如果a<0,﹣1<b<0,则a,ab,ab2按由小到大的顺序排列为()A.a<ab<ab2B.a<ab2<abC.ab<ab2<aD.ab2<a<ab【考点】有理数大小比较;有理数的混合运算.【分析】本题可采取特殊值的方法,把符合题意的值代入选项即可求解.【解答】解:可以用取特殊值的方法,因为a<0,﹣1<b<0,所以可设a=﹣2,b=﹣,所以ab=1,ab2=﹣,即a<ab2<ab.故选B.【点评】本题难度属简单,此类选择题运用取特殊值的方法做比较更具体简单.二、填空题(共6小题,每小题3分,满分18分)13.(﹣2)5的底数是﹣2,指数是5,结果是﹣32.【考点】有理数的乘方.【分析】在an中,a是底数,n是指数,an叫幂.负数的偶次幂是正数,负数的奇次幂是负数.【解答】解:(﹣2)5的底数是﹣2,指数是5,计算结果是﹣32.故答案为:﹣2,5,﹣32.【点评】此题考查了乘方的概念以及运算法则.注意(﹣2)5和﹣25的区别,前者底数是﹣2,后者底数是2.14.绝对值不大于5的整数共有11个.【考点】绝对值.【分析】利用绝对值不大于5求出所有的整数,即可确定个数.【解答】解:绝对值不大于5的整数有﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5共11个.故答案为:11.【点评】本题主要考查了绝对值,解题的关键是利用绝对值不大于5求出所有的整数.15.若3x2﹣4x﹣5=7,则x2﹣x=4.【考点】等式的性质.【分析】首先将常数项移项,根据等式的性质方程两边同除以3,进而得出答案.【解答】解:∵3x2﹣4x﹣5=7,∴3x2﹣4x=12,∴x2﹣x=4.故答案为:4.【点评】此题主要考查了等式的性质,熟练利用等式的性质得出是解题关键.16.若(a+1)2+|b﹣2|=0,化简a(x2y+xy2)﹣b(x2y﹣xy2)的结果为﹣3x2y+xy2.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用非负数的性质得出a,b的值,再利用整式加减运算法则化简求出答案.【解答】解:∵(a+1)2+|b﹣2|=0,∴a=﹣1,b=2,a(x2y+xy2)﹣b(x2y﹣xy2)=﹣x2