【解析版】2014-2015学年红河州元阳县七年级上期末数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2014-2015学年云南省红河州元阳县七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2的绝对值是()A.2B.﹣2C.D.2.若a与2互为相反数,则|a+2|等于()A.2B.﹣2C.0D.﹣13.已知x=﹣3是方程k(x+4)﹣x=5的解,则k的值是()A.﹣2B.2C.3D.54.若∠α+∠β=90°,∠β+∠γ=90°,则∠α与∠γ的关系是()A.互余B.互补C.相等D.∠α=90°+∠γ5.单项式﹣的系数和次数分别是()A.,3B.﹣,2C.﹣2,3D.﹣,36.从左面看如图所示的几何体可得到的平面图形是()A.B.C.D.7.把一条弯曲的公路改成直道,可以缩短路程,用数学知识解释其道理,正确的是()A.两点确定一条直线B.两点之间,线段最短C.两点确定一条线段D.两点之间,直线最短8.如图,已知∠AOC=∠BOD=90°,∠AOD=140°,则∠BOC的度数为()A.40°B.45°C.50°D.60°二、填空题(本大题共6个小题,每小题3分,共18分)9.如果a的倒数是﹣1,那么a2015=.10.2014年12月6日,云南省景谷县发生5.8,5.9级两次地震,地震已造成当日309000余人受灾,请用科学记数法把数309000计为.11.已知∠A=35°21′,则∠A的余角=.12.如图,已知线段AB=10cm,点C是AB上任一点,点M、N分别是AC和CB的中点,则MN的长度为cm.13.某商品降价25%以后的价格是120元,则降价前的价格是元.14.已知依据上述规律,则a99=.三、解答题(共9个小题,满分58分)15.计算:.16.计算:﹣22﹣24×(﹣+).17.若a与b互为相反数,m与n互为倒数,c是最小的正整数,求:2014(a+b)﹣(mn)2015﹣c的值.18.解方程:.19.已知﹣3amb与3a2bn是同类项,求代数式(2mn2﹣1)2+|2(m+1)﹣3(n﹣1)|的值.20.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.21.先化简,再求值:3y2+x2+(2x﹣y)﹣(x2+3y2﹣4),其中x=1,y=﹣2.22.如图,点O为直线AB上一点,∠AOC=50°,OD平分∠AOC.(1)求∠BOD的度数;(2)若OE平分∠BOC,求∠DOE的度数.23.为庆祝第29届北京奥运圣火在泉州站传递,甲、乙两校联合准备文艺汇演.甲、乙两校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套及以上每套服装的价格60元50元40元如果两所学校分别单独购买服装,一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有9名同学抽调去参加迎奥运书法比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱?2014-2015学年云南省红河州元阳县七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2的绝对值是()A.2B.﹣2C.D.考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:﹣2的绝对值是2,即|﹣2|=2.故选:A.点评:本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.若a与2互为相反数,则|a+2|等于()A.2B.﹣2C.0D.﹣1考点:绝对值;相反数.分析:根据只有符号不同的两个数互为相反数,再根据绝对值解答即可.解答:解:因为a与2互为相反数,可得:a=﹣2,所以|a+2|=0,故选C点评:此题考查绝对值问题,关键是根据只有符号不同的两个数互为相反数得出a的值.3.已知x=﹣3是方程k(x+4)﹣x=5的解,则k的值是()A.﹣2B.2C.3D.5考点:一元一次方程的解.专题:计算题.分析:虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.将x的值代入原方程即可求得k的值.解答:解:把x=﹣3代入k(x+4)﹣x=5,得:k×(﹣3+4)+3=5,解得:k=2.故选B.点评:本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.4.若∠α+∠β=90°,∠β+∠γ=90°,则∠α与∠γ的关系是()A.互余B.互补C.相等D.∠α=90°+∠γ考点:余角和补角.专题:计算题.分析:两式组成方程计算即可.解答:解:已知∠α+∠β=90°(1),∠β+∠γ=90°(2),(1)﹣(2)得,∠α=∠γ.故选C.点评:主要考查了余角和补角的概念以及运用.互为余角的两角的和为90°,互为补角的两角之和为180°.解此题的关键是能准确的从题意中找出这两个角之间的数量关系,从而判断出两角之间的关系.5.单项式﹣的系数和次数分别是()A.,3B.﹣,2C.﹣2,3D.﹣,3考点:单项式.分析:根据单项式的系数和次数的概念求解.解答:解:单项式﹣的系数是,次数是1+2=3,故选D.点评:本题主要考查了单项式的系数与次数的定义,在说系数时,注意不要忘记前边的符号是解答此题的关键.6.从左面看如图所示的几何体可得到的平面图形是()A.B.C.D.考点:简单组合体的三视图.分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.解答:解:从左面看,是叠放2个正方形.故选:A.点评:考查了几何体的三种视图和学生的空间想象能力.7.把一条弯曲的公路改成直道,可以缩短路程,用数学知识解释其道理,正确的是()A.两点确定一条直线B.两点之间,线段最短C.两点确定一条线段D.两点之间,直线最短考点:线段的性质:两点之间线段最短.专题:应用题.分析:此题为数学知识的应用,由题意把一段弯曲的公路改成直道,可以缩短路程,就用到两点间线段最短定理.解答:解:弯曲的道路改直,使两点处于同一条线段上,两点之间线段最短,故选:B.点评:本题主要考查两点之间线段最短.熟记两点之间线段最短是解决本题的关键.8.如图,已知∠AOC=∠BOD=90°,∠AOD=140°,则∠BOC的度数为()A.40°B.45°C.50°D.60°考点:余角和补角.分析:由∠AOC=∠BOD=90°,可求出∠AOD+∠BOC的度数,再根据角与角之间的关系求解.解答:解:∵∠AOC=∠BOD=90°,∴∠AOD=140°,∴∠BOC=∠AOC+∠BOD﹣∠AOD=180°﹣140°=40°.故选:A.点评:考查了余角和补角,注意此题的解题技巧:两个直角相加和∠BOC相比,多加了∠BOC一次.二、填空题(本大题共6个小题,每小题3分,共18分)9.如果a的倒数是﹣1,那么a2015=﹣1.考点:倒数.分析:根据倒数的定义可求得a的值,然后再根据有理数的乘法法则计算即可.解答:解:a的倒数是﹣1,所以a=﹣1.(﹣1)2015=﹣1.故答案为:﹣1.点评:本题主要考查的是倒数的定义,根据倒数的定义求得a的值是解题的关键.10.2014年12月6日,云南省景谷县发生5.8,5.9级两次地震,地震已造成当日309000余人受灾,请用科学记数法把数309000计为3.09×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:309000=3.09×105,故答案为:3.09×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.已知∠A=35°21′,则∠A的余角=54°39′.考点:余角和补角;度分秒的换算.分析:∠A的余角为90°﹣∠A,代入求出即可.解答:解:∵∠A=35°21′,∴它的余角为90°﹣∠A=90°﹣35°21′=54°39′.故答案为:54°39′.点评:本题考查了对余角和补角的理解和运用,注意:若∠A和∠B互为余角,则∠A+∠B=90°.12.如图,已知线段AB=10cm,点C是AB上任一点,点M、N分别是AC和CB的中点,则MN的长度为5cm.考点:两点间的距离.分析:由已知条件可知,MN=MC+CN,又因为M是AC的中点,N是BC的中点,则MC+CN=+=AB.解答:解:∵M是AC的中点,N是BC的中点,∴MC=AM=AC,CN=BN=BC,∴MN=MC+CN=AC+BC=(AC+BC)=AB=5cm.故答案为:5.点评:本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.13.某商品降价25%以后的价格是120元,则降价前的价格是160元.考点:一元一次方程的应用.专题:增长率问题.分析:此题要理解25%是降价前的,因此可以设降价前的价格为x元,据题意列方程即可.解答:解:设降价前的价格为x元,由题意得:x(1﹣25%)=120解得x=160.故填160元.点评:此题要注意降价前后的不同,贴近生活,有利于学生掌握.14.已知依据上述规律,则a99=.考点:规律型:数字的变化类.专题:规律型.分析:等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=15.所以a99==.解答:解:a99==.点评:解决本题的关键是得到所求结果的分子,分母和数序之间的关系.三、解答题(共9个小题,满分58分)15.计算:.考点:有理数的加减混合运算.专题:计算题.分析:有理数的加减混合运算,一般应统一成加法运算,再运用运算律进行简化计算.解答:解:原式=﹣﹣﹣+=﹣1﹣=或.点评:在进行有理数的加减混合运算时,第一步是运用减法法则将减法转化成加法;第二步根据加法法则进行计算.16.计算:﹣22﹣24×(﹣+).考点:有理数的混合运算.专题:计算题.分析:原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:原式=﹣4×(﹣8)+2﹣3=32﹣1=31.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.若a与b互为相反数,m与n互为倒数,c是最小的正整数,求:2014(a+b)﹣(mn)2015﹣c的值.考点:代数式求值;相反数;倒数.分析:利用相反数,倒数,以及绝对值的意义求出a+b,mn及c的值,代入计算即可求出值.解答:解:∵a、b互为相反数,m、n互为倒数,c是最小的正整数,∴a+b=0,mn=1,c=1,∴原式=2014×0﹣1﹣1=﹣2.点评:此题考查了代数式求值,相反数,倒数,以及绝对值,熟练掌握各自的性质是解本题的关键.18.解方程:.考点:解一元一次方程.专题:计算题.分析:方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解答:解:去分母得:4﹣8x﹣12=21﹣30x,移项合并得:22x=29,解得:x=.点评:此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.已知﹣3amb与3a2bn是同类项,求代数式(2mn2﹣1)2+|2(m+1)﹣3(n﹣1)|的值.考点:代数式

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功