2016-2017学年北京XX中学九年级(上)期中数学试卷一、选择题(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.1.二次函数y=(x﹣5)2+7的最小值是()A.﹣7B.7C.﹣5D.52.下图形中,是中心对称图形的是()A.B.C.D.3.下列语句中错误的是()A.三点确定一个圆B.垂直于弦的直径平分弦且平分弦所对的两条弧C.三角形的外心是三角形三边垂直平分线的交点D.三角形的内心是三角形内角平分线的交点4.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是()A.M(1,﹣3),N(﹣1,﹣3)B.M(﹣1,﹣3),N(﹣1,3)C.M(﹣1,﹣3),N(1,﹣3)D.M(﹣1,3),N(1,﹣3)5.若一个扇形的半径是18cm,且它的弧长是12πcm,则此扇形的圆心角等于()A.30°B.60°C.90°D.120°6.将抛物线y=x2平移得到抛物线y=x2+5,下列叙述正确的是()A.向上平移5个单位B.向下平移5个单位C.向左平移5个单位D.向右平移5个单位7.某汽车销售公司2013年盈利1500万元,2015年盈利2160万元,且从2013年到2015年,每年盈利的年增长率相同.设每年盈利的年增长率为x,根据题意,所列方程正确的是()A.1500(1+x)+1500(1+x)2=2160B.1500x+1500x2=2160C.1500x2=2160D.1500(1+x)2=21608.如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A.12B.C.D.9.如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为()A.30°B.45°C.50°D.70°10.二次函数y=2x2﹣8x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x轴的下方;当6<x<7时,它的图象位于x轴的上方,则m的值为()A.8B.﹣10C.﹣42D.﹣24二、填空题(本题共18分,每小题3分)11.写出一个二次函数y=2x2的图象性质(一条即可).12.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,则∠ACA′的度数是.13.点A(﹣3,y1),B(2,y2)在抛物线y=x2﹣5x上,则y1y2.(填“>”,“<”或“=”)14.圆内接正六边形的边长是8cm,则该正六边形的半径为.15.二次函数y=x2﹣4x+m图象的顶点在x轴上,则m=.16.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:小敏的作法如下:老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是;由此可证明直线PA,PB都是⊙O的切线,其依据是.三、解答题(本题共50分,每小题5分)17.如图,△ABC顶点的坐标分别为A(1,﹣1),B(4,﹣1),C(3,﹣4).将△ABC绕点A逆时针旋转90°后,得到△AB1C1.在所给的直角坐标系中画出旋转后的△AB1C1,并直接写出点B1的坐标:B1(,);C1(,).18.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB=寸,CD=寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当y>0时,求x的范围.20.已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点,点A在点B的左侧.(1)求A,B两点的坐标和此抛物线的对称轴;(2)设此抛物线的顶点为C,点D与点C关于x轴对称,求四边形ACBD的面积.21.某商场将进价为30元的书包以40元售出,平均每月能售出600个,调查表明:这种书包的售价每上涨1元,其销售量就减少10个.(1)请写出每月售出书包的利润y元与每个书包涨价x元间的函数关系式,并写出自变量x的取值范围;(2)如何定价才能获得最大利润,最大利润是多少?22.△ABC的三个顶点在⊙O上,AD⊥BC,D为垂足,E是的中点,求证:∠1=∠2(提示:可以延长AO交⊙O于F,连接BF).23.如图,AB是⊙O的一条弦,且AB=.点C,E分别在⊙O上,且OC⊥AB于点D,∠E=30°,连接OA.(1)求OA的长;(2)若AF是⊙O的另一条弦,且点O到AF的距离为,直接写出∠BAF的度数.24.已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F.(1)求证:DF为⊙O的切线;(2)若等边三角形ABC的边长为4,求DF的长;(3)写出求图中阴影部分的面积的思路.(不求计算结果)25.已知:抛物线y=x2+(2m﹣1)x+m2﹣1经过坐标原点,且当x<0时,y随x的增大而减小.(1)求抛物线的解析式;(2)结合图象写出,0<x<4时,直接写出y的取值范围;(3)设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB⊥x轴于点B,DC⊥x轴于点C.当BC=1时,求出矩形ABCD的周长.26.阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2=交于A(1,3)和B(﹣3,﹣1)两点.观察图象可知:①当x=﹣3或1时,y1=y2;②当﹣3<x<0或x>1时,y1>y2,即通过观察函数的图象,可以得到不等式ax+b>的解集.有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.下面是他的探究过程,请将(2)、(3)、(4)补充完整:(1)将不等式按条件进行转化:当x=0时,原不等式不成立;当x>0时,原不等式可以转化为x2+4x﹣1>;当x<0时,原不等式可以转化为x2+4x﹣1<;(2)构造函数,画出图象设y3=x2+4x﹣1,y4=,在同一坐标系中分别画出这两个函数的图象.双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)(3)确定两个函数图象公共点的横坐标观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为;(4)借助图象,写出解集结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为.三.解答题(共22分,27题7分,28题7分,29题8分)27.在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到AE,连结EC.如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图1,请你判断线段CE、BD之间的位置和数量关系(直接写出结论);②当点D在线段BC的延长线上时,请你在图2画出图形,判断①中的结论是否仍然成立,并证明你的判断.28.(7分)如图,在平面直角坐标系xOy中,二次函数y=﹣+bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=﹣x+3与二次函数y=﹣+bx+c的图象分别交于B,C两点,点B在第一象限.(1)求二次函数y=﹣+bx+c的表达式;(2)连接AB,求AB的长;(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.29.在平面直角坐标系xOy中,⊙O的半径为1,P是坐标系内任意一点,点P到⊙O的距离SP的定义如下:若点P与圆心O重合,则SP为⊙O的半径长;若点P与圆心O不重合,作射线OP交⊙O于点A,则SP为线段AP的长度.图1为点P在⊙O外的情形示意图.(1)若点B(1,0),C(1,1),,则SB=;SC=;SD=;(2)若直线y=x+b上存在点M,使得SM=2,求b的取值范围;(3)已知点P,Q在x轴上,R为线段PQ上任意一点.若线段PQ上存在一点T,满足T在⊙O内且ST≥SR,直接写出满足条件的线段PQ长度的最大值.2016-2017学年北京XX中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.1.二次函数y=(x﹣5)2+7的最小值是()A.﹣7B.7C.﹣5D.5【考点】二次函数的最值.【分析】根据二次函数的性质求解.【解答】解:∵y=(x﹣5)2+7∴当x=5时,y有最小值7.故选B.【点评】本题考查了二次函数的最值:当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣,函数最小值y=;当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣,函数最大值y=.2.下图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形的定义,关键是正确确定对称中心的位置.3.下列语句中错误的是()A.三点确定一个圆B.垂直于弦的直径平分弦且平分弦所对的两条弧C.三角形的外心是三角形三边垂直平分线的交点D.三角形的内心是三角形内角平分线的交点【考点】三角形的内切圆与内心;垂径定理;确定圆的条件;三角形的外接圆与外心.【分析】分别根据确定圆的条件、垂径定理、三角形的外心与内心的定义对各选项进行逐一分析即可.【解答】解:A、不在同一直线上的三点确定一个圆,故本选项错误;B、符合垂径定理,故本选项正确;C、符合外心的定义,故本选项正确;D、符合内心的定义,故本选项正确.故选A.【点评】本题考查的是三角形的内切圆与内心,熟知三角形三个内角角平分线的交点叫三角形的内心是解答此题的关键.4.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是()A.M(1,﹣3),N(﹣1,﹣3)B.M(﹣1,﹣3),N(﹣1,3)C.M(﹣1,﹣3),N(1,﹣3)D.M(﹣1,3),N(1,﹣3)【考点】坐标与图形变化-旋转;坐标与图形变化-对称.【分析】根据轴对称和中心对称图形的概念解答.【解答】解:A,M关于原点对称,A的坐标是(1,3),∴M(﹣1,﹣3);∵A,N关于x轴对称,A的坐标是(1,3),∴N(1,﹣3).故选C.【点评】两个点关于原点对称,横纵坐标均互为相反数,两个点关于x轴对称,横坐标不变,纵坐标互为相反数.5.若一个扇形的半径是18cm,且它的弧长是12πcm,则此扇形的圆心角等于()A.30°B.60°C.90°D.120°【考点】弧长的计算.【分析】把弧长公式进行变形,代入已知数据计算即可.【解答】解:根据弧长的公式l=,得n===120°,故选:D.【点评】本题考查的是弧长的计算,掌握弧长的公式l=是解题的关键.6.将抛物线y=x2平移得到抛物线y=x2+5,下列叙述正确的是()A.向上平移5个单位B.向下平移5个单位C.向左平移5个单位D.向右平移5个单位【考点】二次函数图象与几何变换.【专题】计算题.【