2015-2016年山东省临沂市九年级上期中数学试卷及答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2015-2016学年山东省临沂市九年级(上)期中数学试卷一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下.1.一元二次方程x(x﹣2)=2﹣x的根是()A.﹣1B.2C.1和2D.﹣1和22.下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个3.关于x的方程x2+2kx﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个不相等的实数根C.k为任何实数,方程都有两个相等的实数根D.k取值不同实数,方程实数根的情况有三种可能4.关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,则a的值是()A.1B.﹣1C.1或﹣1D.25.如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.115°B.120°C.125°D.145°6.2011年向阳村农民人均收入为7200元,到2013年增长至8712元.这两年中,该村农民人均收入平均每年的增长率为()A.10%B.15%C.20%D.25%7.抛物线y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),其形状与抛物线y=﹣2x2相同,则y=ax2+bx+c的函数关系式为()A.y=﹣2x2﹣x+3B.y=﹣2x2+4x+5C.y=﹣2x2+4x+8D.y=﹣2x2+4x+68.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°9.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30°B.45°C.60°D.40°10.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点11.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X﹣1013y﹣1353下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个12.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个B.3个C.2个D.1个二、填空题:(每题4分,共24分)13.若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是.14.已知一元二次方程x2﹣3x﹣3=0的两根为a与b,则的值是.15.如图,点A、B、P在⊙O上,∠APB=50°,若M是⊙O上的动点,则等腰△ABM顶角的度数为.16.如图所示,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,∠BDA=45°,则∠BDE=.17.如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为.18.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0.其中结论正确的是.(填正确结论的序号)三、解答下列各题(共60分)19.解方程(1)x2﹣2x﹣1=0.(2)(x﹣1)2+2x(x﹣1)=0.20.如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,若AF=4.AB=7.(1)旋转中心为;旋转角度为;(2)求DE的长度;(3)指出BE与DF的关系如何?并说明理由.21.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)试判断△AEF的形状,并说明理由;(2)填空:△ABF可以由△ADE绕旋转中心点,按顺时针方向旋转度得到;(3)若BC=8,则四边形AECF的面积为.(直接写结果)22.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.23.(10分)(2014•新疆)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.24.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?25.(10分)(2012•牡丹江)如图,抛物线y=x2+bx+c经过点(1,﹣4)和(﹣2,5),请解答下列问题:(1)求抛物线的解析式;(2)若与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由注:抛物线y=ax2+bx+c的对称轴是x=﹣.2015-2016学年山东省临沂市九年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下.1.一元二次方程x(x﹣2)=2﹣x的根是()A.﹣1B.2C.1和2D.﹣1和2【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】先移项得到x(x﹣2)+(x﹣2)=0,然后利用提公因式因式分解,最后转化为两个一元一次方程,解方程即可.【解答】解:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,∴x1=2,x2=﹣1.故选D.【点评】本题考查了运用因式分解法解一元二次方程的方法:利用因式分解把一个一元二次方程化为两个一元一次方程.2.下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个【考点】中心对称图形.【分析】根据中心对称图形的定义和各图的特点即可求解.【解答】解:第四个图只是轴对称图形,第1、第2和第3个是中心对称图形.中心对称图形有3个.故选:B.【点评】本题考查中心对称图形的概念:绕对称中心旋转180度后所得的图形与原图形完全重合.3.关于x的方程x2+2kx﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个不相等的实数根C.k为任何实数,方程都有两个相等的实数根D.k取值不同实数,方程实数根的情况有三种可能【考点】根的判别式.【分析】先计算判别式的值得到△=4k2+4,根据非负数的性质得△>0,然后根据判别式的意义进行判断.【解答】解:△=4k2﹣4×(﹣1)=4k2+4,∵4k2≥0,∴4k2+4>0∴方程有两个不相等的实数根.故选B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,则a的值是()A.1B.﹣1C.1或﹣1D.2【考点】根与系数的关系;根的判别式.【专题】计算题;压轴题.【分析】根据根与系数的关系得出x1+x2=﹣,x1x2=,整理原式即可得出关于a的方程求出即可.【解答】解:依题意△>0,即(3a+1)2﹣8a(a+1)>0,即a2﹣2a+1>0,(a﹣1)2>0,a≠1,∵关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,∴x1﹣x1x2+x2=1﹣a,∴x1+x2﹣x1x2=1﹣a,∴﹣=1﹣a,解得:a=±1,又a≠1,∴a=﹣1.故选:B.【点评】此题主要考查了根与系数的关系,由x1﹣x1x2+x2=1﹣a,得出x1+x2﹣x1x2=1﹣a是解决问题的关键.5.如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.115°B.120°C.125°D.145°【考点】旋转的性质.【专题】计算题.【分析】先利用互余计算出∠BAC=60°,再根据旋转的性质得到∠BAB′等于旋转角,然后利用邻补角计算∠BAB′的度数即可.【解答】解:∵∠B=30°,∠C=90°,∴∠BAC=60°,∵Rt△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,∴∠BAB′等于旋转角,且∠BAB′=180°﹣∠BAC=120°,∴旋转角等于120°.故选B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.6.2011年向阳村农民人均收入为7200元,到2013年增长至8712元.这两年中,该村农民人均收入平均每年的增长率为()A.10%B.15%C.20%D.25%【考点】一元二次方程的应用.【专题】增长率问题.【分析】设该村人均收入的年平均增长率为x,2011年的人均收入×(1+平均增长率)2=2013年人均收入,把相关数值代入求得年平均增长率.【解答】解:设该村人均收入的年平均增长率为x,由题意得:7200(1+x)2=8712,解得:x1=﹣2.1(不合题意舍去),x2=0.1=10%.答:该村人均收入的年平均增长率为10%.故选A.【点评】本题考查了一元二次方程的运用,应明确增长的基数,增长的次数,根据公式增长后的人均收入=增长前的人均收入×(1+增长率).7.抛物线y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),其形状与抛物线y=﹣2x2相同,则y=ax2+bx+c的函数关系式为()A.y=﹣2x2﹣x+3B.y=﹣2x2+4x+5C.y=﹣2x2+4x+8D.y=﹣2x2+4x+6【考点】待定系数法求二次函数解析式.【专题】压轴题.【分析】抛物线y=ax2+bx+c的形状与抛物线y=﹣2x2相同,a=﹣2.y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),利用交点式求表达式即可.【解答】解:根据题意a=﹣2,所以设y=﹣2(x﹣x1)(x﹣x2),求出解析式y=﹣2(x+1)(x﹣3),即是y=﹣2x2+4x+6.故选D.【点评】本题考查了抛物线的形状系数的关系,本题用交点式比较容易解.8.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.9.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30°B.45°C.60°D.40°【考点】切线的性质.【专题】计算题.【分析】根

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功