2015-2016学年山东省德州市武城二中九年级(上)月考数学试卷(12月份)一、选择题1.下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④长度相等的两条弧是等弧.A.3个B.2个C.1个D.4个2.下列事件:①在干燥的环境中,种子发芽;②在足球赛中,弱队战胜强队;③抛掷10枚硬币,5枚正面朝上;④彩票的中奖概率是5%,买100张有5张会中奖.其中随机事件有()A.1个B.2个C.3个D.4个3.如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE;②AE=BE;③OD=DE;④∠AEO=∠C;⑤=.正确结论的个数是()A.2B.3C.4D.54.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为()A.6.5米B.9米C.13米D.15米5.某一小组的12名同学的血型分类如下:A型3人、B型3人、AB型4人、O型2人,若从该小组随机抽出2人,这两人的血型均为O型的概率为()A.B.C.D.6.已知x1、x2是关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,且满足x1+x2=m2,则m的值是()A.﹣1B.3C.3或﹣1D.﹣3或17.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是()A.OC∥AEB.EC=BCC.∠DAE=∠ABED.AC⊥OE8.如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,则BE+CG的长等于()A.13B.12C.11D.109.如图,将△ABC绕点C旋转60°得到△A′B′C,已知AC=6,BC=4,则线段AB扫过的图形的面积为()A.πB.πC.6πD.π10.三角形两边的长分别是8和6,第三边的长是方程x2﹣12x+20=0的一个实数根,则此三角形的周长是()A.24B.24或16C.16D.2211.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个12.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1B.C.D.2二、填空题(4分×5=20分)13.(4分)设m,n是一元二次方程x2+3x﹣7=0的两个实数根,则m2+3m+mn=.14.(4分)有两把不同的锁和三把钥匙,其中两把钥匙分别能打开其中一把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率为.15.(4分)在⊙O中,弦AB=8,半径为8,则弦AB所对的圆周角是.16.(4分)直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径为17.(4分)如图,AB,CD是⊙O的弦,AB⊥CD,BE是⊙O的直径.若AC=3,则DE=.三、解答题18.关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.19.如图,抛物线y=a(x﹣1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(﹣1,0)(1)求该抛物线的解析式;(2)求梯形COBD的面积.20.交通信号灯(俗称红绿灯),至今已有一百多年的历史了.“红灯停,绿灯行”是我们日常生活中必须遵守的交通规则,这样才能保障交通的顺畅和行人的安全,下面这个问题你能解决吗?小刚每天骑自行车上学都要经过三个安装有红灯和绿灯的路口,假如每个路口红灯和绿灯亮的时间相同,那么,小刚从家随时出发去学校,他至少遇到一次红灯的概率是多少?不遇红灯的概率是多少?(请用树形图分析)21.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.22.如图,已知PA、PB、DE分别切⊙O于A、B、C三点,若PO=13cm,△PDE的周长为24cm,∠APB=40°,求:(1)⊙O的半径;(2)∠EOD的度数.23.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由.24.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,AB为⊙O的直径,动点P从点A开始,沿边AD向点D以1cm/s的速度运动,点Q从点C开始,沿边CB向点B以3cm/s的速度运动,点P、Q分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形PQCD是平行四边形?(2)当t为何值时,直线PQ与⊙O相切、相交、相离?2015-2016学年山东省德州市武城二中九年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题1.下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④长度相等的两条弧是等弧.A.3个B.2个C.1个D.4个【考点】圆心角、弧、弦的关系;圆的认识.【分析】①和④、没有前提;②、注意不是直径的弦;③、注意对称轴是直线.【解答】解:①和④、错误,应强调在同圆或等圆中;②、错误,应强调不是直径的弦;③、错误,应强调过圆心的直线才是它的对称轴.故选D.【点评】在叙述命题时注意要强调命题成立的条件.2.下列事件:①在干燥的环境中,种子发芽;②在足球赛中,弱队战胜强队;③抛掷10枚硬币,5枚正面朝上;④彩票的中奖概率是5%,买100张有5张会中奖.其中随机事件有()A.1个B.2个C.3个D.4个【考点】随机事件.【分析】不确定事件,即随机事件是指在一定条件下,可能发生也可能不发生的事件.【解答】解:①在干燥的环境中,种子发芽是不可能事件;②在足球赛中,弱队战胜强队可能发生也可能不发生,是随机事件;③抛掷10枚硬币,5枚正面朝上是随机事件;④彩票的中奖概率是5%,买100张有5张会中奖是随机事件.是随机事件的有3个,故选C.【点评】用到的知识点为:不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE;②AE=BE;③OD=DE;④∠AEO=∠C;⑤=.正确结论的个数是()A.2B.3C.4D.5【考点】垂径定理;圆心角、弧、弦的关系;圆周角定理.【分析】已知OE是⊙O的半径,D是弦AB的中点,可根据垂径定理的推论来判断所给出的结论是否正确.【解答】解:∵OE是⊙O的半径,且D是AB的中点,∴OE⊥AB,==;(故①⑤正确)∴AE=BE;(故②正确)由于没有条件能够证明③④一定成立,所以一定正确的结论是①②⑤;故选B.【点评】本题考查的是垂径定理,涉及到了圆心角、弧、弦的关系及垂径定理的推论;垂径定理的推论:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧.4.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为()A.6.5米B.9米C.13米D.15米【考点】垂径定理的应用.【专题】压轴题.【分析】根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O.连接OA.根据垂径定理和勾股定理求解.【解答】解:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O连接OA.根据垂径定理,得AD=6设圆的半径是r,根据勾股定理,得r2=36+(r﹣4)2,解得r=6.5故选:A.【点评】此题综合运用了勾股定理以及垂径定理.注意构造由半径、半弦、弦心距组成的直角三角形进行有关的计算.5.某一小组的12名同学的血型分类如下:A型3人、B型3人、AB型4人、O型2人,若从该小组随机抽出2人,这两人的血型均为O型的概率为()A.B.C.D.【考点】概率公式.【分析】列举出所有情况,看两人的血型均为O型的情况占总情况的多少即可.【解答】解:根据题意可知,此题是不放回实验,一共有12×11=132种情况;这两人的血型均为O型的有2种情况.∴这两人的血型均为O型的概率为=.故选A.【点评】此题考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.6.已知x1、x2是关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,且满足x1+x2=m2,则m的值是()A.﹣1B.3C.3或﹣1D.﹣3或1【考点】根的判别式;根与系数的关系.【分析】根据一元二次方程根与系数的关系的关系可得x1+x2=﹣=2m+3,又x1+x2=m2,所以可建立关于m的方程求出m的值即可.【解答】解:∵方程有两个不相等的实数根,∴△>0,即b2﹣4ac>0,∴m>﹣,∵x1+x2=﹣=2m+3,x1•x2=m2,∴m2=2m+3,解得:m1=﹣1,m2=3,又∵﹣1<,∴m=3.故选B.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.和根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.7.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是()A.OC∥AEB.EC=BCC.∠DAE=∠ABED.AC⊥OE【考点】切线的性质;圆心角、弧、弦的关系;圆周角定理.【专题】计算题.【分析】由C为弧EB的中点,利用垂径定理的逆定理得出OC垂直于BE,由AB为圆的直径,利用直径所对的圆周角为直角得到AE垂直于BE,即可确定出OC与AE平行,选项A正确;由C为弧BE中点,即弧BC=弧CE,利用等弧对等弦,得到BC=EC,选项B正确;由AD为圆的切线,得到AD垂直于OA,进而确定出一对角互余,再由直角三角形ABE中两锐角互余,利用同角的余角相等得到∠DAE=∠ABE,选项C正确;AC不一定垂直于OE,选项D错误.【解答】解:A、∵点C是的中点,∴OC⊥BE,∵AB为圆O的直径,∴AE⊥BE,∴OC∥AE,本选项正确;B、∵=,∴BC=CE,本选项正确;C、∵AD为圆O的切线,∴AD⊥OA,∴∠DAE+∠EAB=90°,∵∠EBA+∠EAB=90°,∴∠DAE=∠EBA,本选项正确;D、AC不一定垂直于OE,本选项错误,故选D【点评】此题考查了切线的性质,圆周角定理,以及圆心角,弧及弦之间的关系,熟练掌握切线的性质是解本题的关键.8.如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,则BE+CG的长等于()A.13B.12C.11D.10【考点】切线长定理;勾股定理.【分析】根据平行线的性质以及切线长定理,即可证明∠BOC=90°,再根据勾股定理即可求得BC的长,再结合切线长定理即可求解.【解答】解:∵AB∥CD,∴∠ABC+∠BCD=180°,∵CD、BC,AB分别与⊙O相切于G、F、E,∴∠OBC=∠ABC,∠OCB=∠BCD,BE=BF,CG=CF