用相似三角形测量高度•请同学们回忆判定两三角形相似的条件有哪些?思考一下想一想同学们,怎样利用相似三角形的有关知识测量旗杆(或路灯,或树,或烟囱)的高度?方法1:利用阳光下的影子CAEBD∵太阳的光线是平行的,∴AE∥CB.∴∠AEB=∠CBD.∵人与旗杆是垂直于地面的,∴∠ABE=∠CDB,∴△ABE∽△CBD.CAEBD∴即CD=方法要点运用方法1:可以把太阳光近似地看成平行光线,计算时还要用到观测者的身高.CAEBD方法2:利用标杆测量旗杆的高度ANCEMBFDANCEMBFD3ANCEMBFDANCEMBFDANCEMBFD1212312312如图,过点A作AN⊥DC于N,交EF于M.∵人、标杆和旗杆都垂直于地面,∴∠ABF=∠EFD=∠CDH=90°.∴人、标杆和旗杆是互相平行的.∵EF∥CN,∴∠1=∠2,∵∠3=∠3,△AME∽△ANC,∴∵人与标杆的距离、人与旗杆的距离,标杆与人的身高的差EM都已测量出,∴能求出CN,∵∠ABF=∠CDF=∠AND=90°,∴四边形ABND为矩形.∴DN=AB,∴能求出旗杆CD的长度.3121231212312ANCEMBFD21ANCEMBFD21ANCEMBFD231ANCEMBFD2方法要点运用方法2:观测者的眼睛必须与标杆的顶端和旗杆的顶端“三点共线”,标杆与地面要垂直,在计算时还要用到观测者的眼睛离地面的高度.ANCEMBFDBDCAE方法3:利用镜子∵入射角=反射角,∴∠AEB=∠CED.∵人、旗杆都垂直于地面,∴∠B=∠D=90°.∴△EAB∽△ECD.BDCAE即CD=∴方法要点运用方法3:光线的入射角等于反射角.BDCAE1.高4米的旗杆在水平地面上的影子长为6米,此时测得附近一个建筑物的影长为24米,则该建筑物的高度是米.162.如图是小明设计用手电筒测量某建筑物高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到该建筑物CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该建筑物的高度是().A.6米B.8米C.18米D.24米BBDCAP3.如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M、颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C、D.然后测出两人之间的距CD=1.25m,颖颖与楼之间的距离DN=30m,颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.你能根据以上测量数据帮助他们求出该住宅楼的高度吗?解:过A作CN的平行线交BD于E,交MN于F.由已知可得FN=ED=AC=0.8m,AE=CD=1.25m,EF=DN=30m,∠AEB=∠AFM=90°.又∠BAE=∠MAF,∴△ABE∽△AMF.∴BEMF=AEAF.即1.6-0.8MF=1.251.25+30.解得MF=20.∴MN=MF+FN=20+0.8=20.8(m).所以该住宅楼的高度为20.8m.ANMBECDNFMBAMBCAMBDCAMBEDCAMBFEDCAMBECAMBNFEDCAMB通过本节课的学习,你有哪些收获?有何感想?你学会了哪些方法?1.旗杆的影子长6米,同时测得旗杆顶端到其影子顶端的距离是10米,如果此时附近小树的影子长为3米,那么小树的高是___________米.2.如图,AB表示一个窗户的高,AM和BN表示射入室内的光线,窗户的下端到地面的距离BC=1米,已知某一时刻BC在地面的影长CN=1.5米,AC在地面的影长CM=4.5米,求窗户的高度.AMCBN知识的升华独立作业基础题:助学4.6不带星号的.提高题:助学4.6带星号的.实践题:任务:全班同学每五人一个小组,选出组长,分头到户外自行选择你感兴趣的测量对象进行实际的测量,如旗杆、楼房、树、电线杆等并将结果记录下来.一盗窃犯于夜深人静之时潜入某单位作案,该单位的自动摄像系统摄下了他作案的全过程.请你为警方设计一个方案,估计该盗窃犯的身高.