例1设)(),(xgxf在ba,上连续,在),(ba内可微,且0)(xg。证明至少有一点ba,使得:)()()()()()(gfgbgaff。[分析]:要证的等式即为:)]()()[()()]()([gbgfgaff,即0])()()()()()([xbgxfxgafxgxf记)()()()()()()(bgxfxgafxgxfxF,则这个)(xF可用作证明此题的辅助函数。[证明]:作辅助函数)()()()()()()(bgxfxgafxgxfxF,则)(),(xgxf在],[ba上连续、在),(ba内可微,)(xF在],[ba上连续、在),(ba内可微,且)()()()(bgafbFaF。由Rolle定理,至少有一点ba,,使0)(F,即0])()()()()()([xbgxfxgafxgxf0)()()()()()()()(bgfgafgfgf0)(xg,当然有0)(g;)()()()()()(gfgbgaff例2设)(xf在],[ba上可微)0(ba,证明至少存在一点ba,使得abfafbfln)()()([分析]:要证的等式即为xxffabafbf][ln)()(lnln)()(只须对用Cauchy中值定理即可。[证明]:xxfln),(在],[ba上可微,且01)(lnxx,由Cauchy中值定理,至少有点),(ba,使得)(1)(lnln)()(ffabafbf,即abfafbfln)()()(。以上两例的分析过程中,我们运用了“倒推法”将辅助函数构造了出来。虽然这种“构造”的方法仍然是在“凑”,但已不再是随机的和无把握的了。因为采用了“倒推法”,而“倒推”的目的是要寻找“原函数”。既然如此,我们是否可以不去凑,而改用不定积分的方法直接“求”出这个“原函数”呢?如在例2中,我们可以将要证的等式变形为1ln)()()(abafbff)0(a两边对积分,得:Cabafbfflnln)()()((C为任意常数)即Cabafbfflnln)()()(,可取xabafbfxfxFlnln)()()()(。容易验证:ababfbafbFaFlnln)(ln)()()(。可见,这样求出的)(xF满足Rolle定理。于是,对)(xF应用Rolle定理即可。例3设)(xf于],[21xx上可微,且021xx,证明:至少存在一点),(21xx,使得)()()()(1212121ffxfxfxxxx。[分析]:将要证的等式两边同乘以21,得:22212121)()(1)()(1ffxfxfxxxx两边对积分,得:Cfxfxfxxxx)(1)()(1212121即Cxfxfxxxxf1)()(1)(212121可取xxfxfxxxxxxfxF1)()(1)()(212121可以验证:212121)()()()(xxxfxfxFxF。于是,可由Rolle定理证之。[注]:此题也可用Cauchy定理证明。简述如下:211221212121)()()()(1xxxfxxfxxfxfxxxx)()(1)()(11)()(22),(21112221ffffxxxxfxxfxxCauchy定理由例4用Rolle定理证明Cauchy定理。[分析]:要证)()()()()()(gfagbgafbf,即0)()]()([)()]()([fagbggafbf两边对积分,得:Cfagbggafbf)()]()([)()]()([可取)()]()([)()]()([)(xfagbgxgafbfxF可以验证:)()()()()()(afbgagbfaFbF。即满足Rolle定理条件。例5设)(xf在]1,0[上可微,0)0(f,且当)1,0(x时,0)(xf。证明:至少有一点)1,0(,使得:)1()1()()(2ffff。[分析]:在上面等式中对积分,得:Cffln)1(ln)(ln2即Cff)1()(2可取)1()()(2xfxfxF,这里0)1()0(FF。可用Rolle定理。例6设)(xf可微,则)(xf的任意两个零点之间必有)()(xfxf的零点。[分析]:假设ba,是)(xf的两相邻零点)(ba。要证:0)()(ff,),(ba。即1)()(ff。积分,得:Cfln)(ln,即Cef)(,亦即Cef)(。于是,可取xexfxF)()(,这里0)()(bFaF。可用Rolle定理。例7设)(xf在],[ba上可导,0)()(bfaf,当),(bax时,0)(xf。证明:对任何实数k都有),(ba,使kff)()(。[或)()(kff][分析]:在kff)()(两边对积分,整理得:kCef)(,即Cefk)(。可取kxexfxF)()(,这里0)()(bFaF。可用Rolle定理。例8设)(xf在],[ba上可导,0)()(bfaf,)(xg为任意可微函数则至少有一点),(ba,使0)()()(gff。[分析]:与例6和例7类似,可求得:)()()(xgexfxF,这里0)()(bFaF。例9设)(xf在),0[上可微,且21)(0xxxf,证明至少存在一点0,使22211)(f。[分析]:在22211)(f两边对积分,得)(tantan1tan111)(222tan222tdttdft令Cttdtdttt2sin212cos)sin(cos22CCtt21cossin可取21)()(xxxfxF由21)(0xxxf知:0)(lim)0(xFFx。由推广的Rolle定理即可证明。[附]:推广的Rolle定理:设)(xf在),0[上连续,在),0(内可导,且)(lim)0(xffx,则必有),0(,得0)(f。一、施托兹(Stolz)定理定理1:若ny,ny,且nnnnnyyxx11lim存在,则nnnyxlim存在,且有nnnnnnnnyyxxyx11limlim[证明]:设Ayyxxnnnnn11lim,则NnN:,0,0Ayyxxnnnn11即AyyxxAnnnn11,即nnnnnnyyAxxyyA111,于是,有:NNNNNNyyAxxyyA111121212NNNNNNyyAxxyyA232323NNNNNNyyAxxyyA……………………………………111nnnnnnyyAxxyyA将以上诸式相加,得:NnNnNnyyAxxyyA即AyyxxANnNn,亦即AyyxxNnNnAyyxxNnNnnlim而NnNnnyyxxlimNnNnNnnnyyxyyxlimlimnNnNnnNnnnyyyxyyyx1lim1limnnnyxlimnnnnnNnNnnnnnyyxxAyyxxyx11limlimlim[证毕][注]:当nnnnnyyxx11lim,则nnnyxlim。(证明略)定理2:若nnba,都以0为极限,且nb,则nnnbalim11limnnnnnbbaa。(只要右端极限存在)(证明略)定理3:若nnxlim存在(或为),则nnnnxnxxxlimlim21。[略证]:nxxxnn21limnnxxxxxnnnn1lim1111limnnxnnxlim定理4:若0nx,且nnnxx1lim存在,则nnnxlimnnnxx1lim。[略证]:nnnxlimnnxnelnlimnxnnelnlimnnxxnnne)1(lnln1limnnxxne1lnlimnnnxx1lim定理5:若0nx,且nnxlim存在,则nnnnxxxx121limnnxlim。[略证]:nnnnxxxx121limnnnnnxxxxxxxx121121limnnxlim二、极限的各种求法举例:例1为正整数kkkkknnn121lim111111limkkkkkknnnnn1111limkkknnnnkkknnnn11111lim1111!211)1(11lim12knnnkknkn11k(施托兹法)[解法二]:为正整数kkkkknnn121limnnnnnkkkn121limnniknin1lim110dxxk10111kxk11k(积分法)例2求nnnlim,nnn!lim[解法一]:nnnlimnnneln1limnnnnne)1(ln)1ln(limnnne1lnlim10ennn!limnnne)!ln(limnnnnne)1(!ln)!1(lnlim)1ln(limnne[解法二]:(由定理4、定理5)nnnlim11limnnn;nnn!limnnlim例3nnnn!limnnnnn!limnnnnnnn!)1()!1(lim1nnnnn)1(limennn1111lim[解法二]:nnnnnnnln)!ln(1!lnnnnnnlnlnln2lnln1ln1nnnnnln2ln1ln1ninin1ln11ln10)(dxxn1!limennnn例4设xxxxnn11sinsinsin,0sinsin,证明1sin3limxnnn[证明]:xnnn2sinlimxnnn2sin1limxxnnn221sin1sin11lim设xznsin,则zxnsinsin1,当n时,0z。xnnn2sinlim2201sin11limzzzzzzzz22220sinsinlimzzzzzz2240