2019年湖南省长沙市中考数学试卷及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2019年湖南省长沙市中考数学试卷一、选择题(本题共12小题,每题3分,共36分)1.(3分)下列各数中,比﹣3小的数是()A.﹣5B.﹣1C.0D.12.(3分)根据《长沙市电网供电能力提升三年行动计划》,明确到2020年,长沙电网建设改造投资规模达到15000000000元,确保安全供用电需求.数据15000000000用科学记数法表示为()A.15×109B.1.5×109C.1.5×1010D.0.15×10113.(3分)下列计算正确的是()A.3a+2b=5abB.(a3)2=a6C.a6÷a3=a2D.(a+b)2=a2+b24.(3分)下列事件中,是必然事件的是()A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°5.(3分)如图,平行线AB,CD被直线AE所截,∠1=80°,则∠2的度数是()A.80°B.90°C.100°D.110°6.(3分)某个几何体的三视图如图所示,该几何体是()A.B.C.D.7.(3分)在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数B.中位数C.众数D.方差8.(3分)一个扇形的半径为6,圆心角为120°,则该扇形的面积是()A.2πB.4πC.12πD.24π9.(3分)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°10.(3分)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A.30nmileB.60nmileC.120nmileD.(30+30)nmile11.(3分)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A.B.C.D.12.(3分)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)式子在实数范围内有意义,则实数x的取值范围是.14.(3分)分解因式:am2﹣9a=.15.(3分)不等式组的解集是.16.(3分)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008“摸出黑球”的频率(结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是.(结果保留小数点后一位)17.(3分)如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是m.18.(3分)如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2MA.其中正确的结论的序号是.(只填序号)三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分。解答应写出必要的文字说明、证明过程或验算步骤)19.(6分)计算:|﹣|+()﹣1﹣÷﹣2cos60°.20.(6分)先化简,再求值:(﹣)÷,其中a=3.21.(8分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动.为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.等级频数频率优秀2142%良好m40%合格6n%待合格36%(1)本次调查随机抽取了名学生;表中m=,n=;(2)补全条形统计图;(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.22.(8分)如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.23.(9分)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?24.(9分)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;(命题)②三个角分别相等的两个凸四边形相似;(命题)③两个大小不同的正方形相似.(命题)(2)如图1,在四边形ABCD和四边形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,==.求证:四边形ABCD与四边形A1B1C1D1相似.(3)如图2,四边形ABCD中,AB∥CD,AC与BD相交于点O,过点O作EF∥AB分别交AD,BC于点E,F.记四边形ABFE的面积为S1,四边形EFCD的面积为S2,若四边形ABFE与四边形EFCD相似,求的值.25.(10分)已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围;(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好≤≤,求m,n的值.26.(10分)如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.2019年湖南省长沙市中考数学试卷一、选择题(本题共12小题,每题3分,共36分)1-5、ACBDC6-10、DBCBD11-12、AB二、填空题(本大题共6小题,每小题3分,共18分)13、x≥516、0.414、a(m+3)(m﹣3)17、10015、﹣1≤x<218、①③④三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分。解答应写出必要的文字说明、证明过程或验算步骤)19、120、21、(1)502012(2)略(3)2000×=1640人22、(1)证明:∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD,∵DE=CF,∴AE=DF,在△BAE和△ADF中,,∴△BAE≌△ADF(SAS),∴BE=AF;(2)解:由(1)得:△BAE≌△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,∴BE===5,在Rt△ABE中,AB×AE=BE×AG,∴AG==.23、解:(1)设增长率为x,根据题意,得2(1+x)2=2.42,解得x1=﹣2.1(舍去),x2=0.1=10%.答:增长率为10%.(2)2.42(1+0.1)=2.662(万人).答:第四批公益课受益学生将达到2.662万人次.24、(1)解:①四条边成比例的两个凸四边形相似,是假命题,角不一定相等.②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例.③两个大小不同的正方形相似.是真命题.故答案为假,假,真.(2)证明:如图1中,连接BD,B1D1.∵∠BCD=∠B1C1D1,且=,∴△BCD∽△B1C1D1,∴∠CDB=∠C1D1B1,∠C1B1D1=∠CBD,∵==,∴=,∵∠ABC=∠A1B1C1,∴∠ABD=∠A1B1D1,∴△ABD∽△A1B1D1,∴=,∠A=∠A1,∠ADB=∠A1D1B1,∴,===,∠ADC=∠A1D1C1,∠A=∠A1,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,∴四边形ABCD与四边形A1B1C1D1相似.(3)如图2中,∵四边形ABCD与四边形EFCD相似.∴=,∵EF=OE+OF,∴=,∵EF∥AB∥CD,∴=,==,∴+=+,∴=,∵AD=DE+AE,∴=,∴2AE=DE+AE,∴AE=DE,∴=1.25、解:(1)由题可知,抛物线解析式是:y=﹣2(x﹣1)2+1=﹣2x2+4x﹣1.∴.∴b=6,c=2019.(2)设抛物线线上关于原点对称且不重合的两点坐标分别是(x0,y0),(﹣x0,﹣y0),代入解析式可得:.∴两式相加可得:﹣4x02+2(c﹣2020)=0.∴c=2x02+2020,∴c≥2020;(3)由(1)可知抛物线为y=﹣2x2+4x﹣1=﹣2(x﹣1)2+1.∴y≤1.∵0<m<n,当m≤x≤n时,恰好≤≤,∴≤.∴.∴≤1,即m≥1.∴1≤m<n.∵抛物线的对称轴是x=1,且开口向下,∴当m≤x≤n时,y随x的增大而减小.∴当x=m时,y最大值=﹣2m2+4m﹣1.当x=n时,y最小值=﹣2n2+4n﹣1.又,∴.将①整理,得2n3﹣4n2+n+1=0,变形,得2n2(n﹣1)﹣(2n+1)(n﹣1)=0.∴(n﹣1)(2n2﹣2n﹣1)=0.∵n>1,∴2n2﹣2n﹣1=0.解得n1=(舍去),n2=.同理,由②得到:(m﹣1)(2m2﹣2m﹣1)=0.∵1≤m<n,∴2m2﹣2m﹣1=0.解得m1=1,m2=(舍去),m3=(舍去).综上所述,m=1,n=.26、(1)令ax2+6ax=0,ax(x+6)=0,∴A(﹣6,0);(2)①证明:如图,连接PC,连接PB延长交x轴于点M,∵⊙P过O、A、B三点,B为顶点,∴PM⊥OA,∠PBC+∠BOM=90°,又∵PC=PB,∴∠PCB=∠PBC,∵CE为切线,∴∠PCB+∠ECD=90°,又∵∠BDP=∠CDE,∴∠ECD=∠COE,∴CE=DE.②解:设OE=m,即E(m,0),由切割线定理得:CE2=OE•AE,∴(m﹣t)2=m•(m+6),∴①,∵∠CAE=∠CBD,∠CAE=∠OBE,∠CBO=∠EBO,由角平分线定理:,即:,∴②,由①②得,整理得:t2+18t+36=0,∴t2=﹣18t﹣36,∴.

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功