中考数学总结复习专题:最值问题总结-讲义

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1中考最值问题专题分享知识点一将军饮马【知识梳理】一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?【问题简化】如图,在直线上找一点P使得PA+PB最小?【问题分析】这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.AB将军军营河PBA2【问题解决】作点A关于直线的对称点A’,连接PA’,则PA’=PA,所以PA+PB=PA’+PB当A’、P、B三点共线的时候,PA’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.【例题精讲】类型一、【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.A'ABP折点端点A'PBAMNP''P'NMBAPOOPAB3此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.例1、如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.类型二【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。考虑PQ是条定线段,故只需考虑PM+MN+NQ最小值即可,类似,分别作点P、Q关于OA、OB对称,化折线段PM+MN+NQ为P’M+MN+NQ’,当P’、M、N、Q’共线时,四边形PMNQ的周长最小。POBAMNQ'P'MNBAPOQQOPABNM4类型三【一定两动之点线】在OA、OB上分别取M、N使得PM+MN最小。此处M点为折点,作点P关于OA对称的点P’,将折线段PM+MN转化为P’M+MN,即过点P’作OB垂线分别交OA、OB于点M、N,得PM+MN最小值(点到直线的连线中,垂线段最短)例2、如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且AC:CB=1:3,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2)B.5(2,5)2C.8(3,8)3D.(3,3)例3、如图,在Rt△ABD中,AB=6,∠BAD=30°,∠D=90°,N为AB上一点且BN=2AN,M是AD上的动点,连结BM,MN,则BM+MN的最小值是___________.例4、如图,在锐角三角形ABC中,BC=4,∠ABC=60°,BD平分∠ABC,交AC于点D,M、N分别是BD,BC上的动点,则CM+MN的最小值是()A.3B.2C.23D.4P'MNBAPOOPABNMyxPODCBA5例5、如图,在矩形ABCD中,AB=6,AD=3,动点P满足13PABABCDSS矩形,则点P到A、B两点距离之和PA+PB的最小值为()A.213B.210C.35D.41例6、如图,矩形ABCD中,AB=10,BC=5,点E、F、G、H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A.55B.105C.103D.153例7、如图,已知正比例函数y=kx(k0)的图像与x轴相交所成的锐角为70°,定点A的坐标为(0,4),P为y轴上的一个动点,M、N为函数y=kx(k0)的图像上的两个动点,则AM+MP+PN的最小值为____________.NMDBANMDCBADCBAPHFGEDCBAPAMNOxy6【题型剖析】-【将军过桥】【将军遛马】一、【将军过桥】已知将军在图中点A处,现要过河去往B点的军营,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?考虑MN长度恒定,只要求AM+NB最小值即可.问题在于AM、NB彼此分离,所以首先通过平移,使AM与NB连在一起,将AM向下平移使得M、N重合,此时A点落在A’位置.问题化为求A’N+NB最小值,显然,当共线时,值最小,并得出桥应建的位置.河B军营A将军NMA'河B军营A将军NM7【用几何变换将若干段原本彼此分离线段组合到一起】二、【将军遛马】如图,将军在A点处,现在将军要带马去河边喝水,并沿着河岸走一段路,再返回军营,问怎么走路程最短?【问题简化】已知A、B两点,MN长度为定值,求确定M、N位置使得AM+MN+NB值最小?【分析】考虑MN为定值,故只要AM+BN值最小即可.将AM平移使M、N重合,AM=A’N,将AM+BN转化为A’N+NB.构造点A关于MN的对称点A’’,连接A’’B,可依次确定N、M位置,可得路线.A'河B军营A将军NMMN将军A军营B河A'BANM8【例题精讲】例1、如图,在平面直角坐标系中,矩形ABCD的顶点B在原点,点A、C在坐标轴上,点D的坐标为(6,4),E为CD的中点,点P、Q为BC边上两个动点,且PQ=2,要使四边形APQE的周长最小,则点P的坐示应为______________.例2、如图,矩形ABCD中,AD=2,AB=4,AC为对角线,E、F分别为边AB、CD上的动点,且EF⊥AC于点M,连接AF、CE,求AF+CE的最小值.【课堂练习】1、如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A''MNABA'EyxB()QACDOPABCDEFM9A.4B.5C.6D.72、如图,在等边△ABC中,AB=6,N为AB上一点且BN=2AN,BC的高线AD交BC于点D,M是AD上的动点,连结BM,MN,则BM+MN的最小值是___________.3、如图,在Rt△ABC中,∠ACB=90°,AC=6.AB=12,AD平分∠CAB,点F是AC的中点,点E是AD上的动点,则CE+EF的最小值为()PDCBAABCDMN10A.3B.4C.33D.234、如图,矩形ABOC的顶点A的坐标为(-4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.4(0,)3B.5(0,)3C.(0,2)D.10(0,)35、如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为.EAFCDBEODCBAxyNMPOBAxy116、如图1,已知A(0,2)、B(6,4)、E(a,0)、F(a+1,0),求a为何值时,四边形ABEF周长最小?请说明理由.【巩固练习】1、如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是()A.ABB.DEC.BDD.AF2、如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.3、如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()12A.25°B.30°C.35°D.40°4、如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.5、如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ=.6、如图1,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙B和⊙A上的动点,则PE+PF的最小值是.137、几何模型:条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是________;14(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,PA+PC的最小值为______;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,△PQR周长的最小值为_________.知识点二辅助圆(隐圆)【知识梳理】一、从圆的定义构造圆圆的定义:平面内到定点的距离等于定值的所有点构成的集合.构造思路:若动点到平面内某定点的距离始终为定值,则其轨迹是圆或圆弧.例1、如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A’MN,连接A’C,则A’C长度的最小值是__________.例2、如图,矩形ABCD中,AB=4,BC=8,P、Q分别是直线BC、AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF、PD,则PF+PD的最小值是_________.A'NMABCD15二、定边对直角知识回顾:直径所对的圆周角是直角.构造思路:一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.图形释义:若AB是一条定线段,且∠APB=90°,则P点轨迹是以AB为直径的圆.例1、如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG于点H,若正方形边长为2,则线段DH长度的最小值是________.QABCDEFPPPABOP16例2、如图,正方形ABCD的边长为4,动点E、F分别从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF的垂线BG,垂足为点G,连接AG,则AG长的最小值为.例3、如图,正方形ABCD的边长是4,点E是AD边上一动点,连接BE,过点A作AF⊥BE于点F,点P是AD边上另一动点,则PC+PF的最小值为________.HGABCDEFGFEDCBAABCDEFP17三、定边对定角在“定边对直角”问题中,依据“直径所对的圆周角是直角”,关键性在于寻找定边、直角,而根据圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角都相.定边必不可少,而直角则可一般为定角.例如,AB为定值,∠P为定角,则A点轨迹是一个圆.当然,∠P度数也是特殊角,比如30°、45°、60°、120°,下分别作对应的轨迹圆.若∠P=30°,以AB为边,同侧构造等边三角形AOB,O即为圆心.若∠P=45°,以AB为斜边,同侧构造等腰直角三角形AOB,O即为圆心.若∠P=60°,以AB为底,同侧构造顶角为120°的等腰三角形AOB,O即为圆心若∠P=120°,以AB为底,异侧为边构造顶角为120°的等腰三角形AOB,O即为圆心.PPABP30°O60°BAP90°45°ABOP60°120°OPABO120°120°PAB18例1、如图,△ABC为等边三角形,AB=2,若P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为_________.例2、如图,AB是圆O的直径,M、N是弧AB(异于A、B)上两点,C是弧MN上一动点,∠ACB的角平分线交圆O于点D,∠BAC的平分线交CD于点E,当点C从点M运动到点N时,则C、E两点的运动路径长的比是_______.知识

1 / 38
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功