数学建模相关概念面对一些生活中杂乱无章的现象,只要我们认真的去观察就会发现其中可以用数学语言来描述的关系,而做为数学研究者从中抽象出恰当的数学关系,然后再按照相应关系,将这个问题化成一个数学问题这样我们就能够按关系组建这个问题的数学模型的过程就是数学建模。从数学的产生,数学内部发展,数学外部关联,建立并求解模型的意识与观念,也就是让数学走出世界,是学生应该掌握的一种数学思想方法。我们分析大概数学内容,首先要说数,数是小学生接触的第一个抽象概念,对数有了一定的抽象认识后,就可以接触到数的运算,数的计算既包括计算方法,也包括计算法则小学生还需要掌握一些常见的数量关系,小学阶段一系列的编排都是为了学生之后学习整数打下基础,也就是要逐步培养学生建立抽象模型的意识,使他们掌握这些数量关系模型,一步步的渗透建模思想,能够根据具体的情境对模型进行变形,还要掌握常见的量及它们间的换算关系。图形与几何部分中可以抽象为数学模型,这体现在运用模型分析问题的过程,在具体情境中构建数学模型,是学生逐步发展自己建模思想的过程,比如我们常用到的图形,学生先是了解图形的特点,更好的分析问题,从具体事物中抽象出图形,找出解决问题的最佳方案。对图形有了一定的了解后,学生具备了运用数学模型分析问题能力,能够理解并建立抽象的数学模型。