1山东省泰安市东平县2015-2016学年九年级数学上学期期中试题一、选择题(本大题共20个小题,每小题3分,共60分.)在四个选项中只有一项是正确的.1.下列说法正确的是()A.各有一个角是70°的等腰三角形相似B.各有一个角是95°的等腰三角形相似C.所有的矩形相似D.所有的菱形相似2.在△ABC中,∠C=90°,sinB=,则tanA的值为()A.B.1C.D.3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点4.如图,在△ABC中,已知∠AED=∠B,DE=6;AB=10,AE=5,则BC的长为()A.3B.12C.D.75.如图,在△ABC中,D、E分别为AB,AC的中点,连接BE,DC交于F点,则△DEF与△BDF的面积比为()A.1:2B.1:4C.4:9D.1:36.如图,D,E,F分别是OA,OB,OC的中点,下面的说法中:①△ABC与△DEF是位似图形;②△ABC与△DEF的相似比为1:2;③△ABC与△DEF的周长之比为2:1;2④△ABC与△DEF的面积之比为4:1.正确的是()A.①②③B.①③④C.①②④D.②③④7.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.8.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①②③④四个三角形.若OA:OC=OB:OD,则下列结论中一定正确的是()A.①②相似B.①③相似C.①④相似D.②相似9.在△ABC中,∠C=90°,∠B=50°,AB=10,则BC的长为()A.10tan50°B.10cos50°C.10sin50°D.10.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5mB.mC.mD.m11.正方形网格中,∠AOB如图放置,则sin∠AOB=()3A.B.C.D.212.如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为()A.10米B.10米C.20米D.米13.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长是整数,则满足条件的点P有()A.2个B.3个C.4个D.5个14.如图,已知A,B,C三点在⊙O上,AC⊥BO于O,∠B=55°,则∠BOC的度数为()A.45°B.35°C.70°D.80°15.如图,⊙O的圆心O到直线m的距离为3cm,⊙O的半径为1cm,将直线m向右(垂直于m的方向)平移,使m与⊙O相切,则平移的距离为()A.1cmB.2cmC.4cmD.2cm或4cm16.如图,两个同心圆的半径分别为3cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为()A.3cmB.4cmC.6cmD.8cm417.如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,0A=3,那么∠AOB所对弧的长度为()A.6πB.5πC.3πD.2π18.如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A.B.C.D.19.边长为a的正六边形的面积为()A.aB.4a2C.a2D.a220.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DMB.=C.∠ACD=∠ADCD.OM=MD二、填空题(本大题共4个小题,每小题3分,共12分.)21.如图所示,已知∠DAB=∠CAE,再添加一个条件就能使△ADE∽△ABC,则这个条件可能是.(写出一个即可)522.在△ABC中,∠A,∠B都是锐角,且(sinA﹣)2+(tanB﹣1)2=0,则∠C=.23.如图,△ABC内接于⊙O,若∠B=30°,AC=3,则⊙O的直径为.24.如图,在⊙O上有定点C和动点P,位于直径AB的两侧,过点C作CP的垂线与PB的延长线交于点Q.已知⊙O的直径为5,tan∠ABC=,则CQ的最大值为.三、解答题(本大题共5个小题,共48分.)解答应写出文字说明、推理过程或演算步骤.25.如图,在△ABC中,已知:∠A=30°,∠C=105°,AC=4,求AB和BC的长.26.如图,等边三角形ABC的边长为5,点E为BC边上一点,且BE=2,点D为AC边上一点,若∠AED=60°,求CD的长?27.如图,已知Rt△ABC,∠C=90°,CD是斜边AB上的高.(1)求证:CD2=AD•BD;(2)若AC=3,BC=4,求BD的长和求sin∠BCD的值.28.已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于点E.6(1)求证:DE⊥BC;(2)如果CD=4,CE=3,求⊙O的半径.29.如图,已知AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.72015-2016学年山东省泰安市东平县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共20个小题,每小题3分,共60分.)在四个选项中只有一项是正确的.1.下列说法正确的是()A.各有一个角是70°的等腰三角形相似B.各有一个角是95°的等腰三角形相似C.所有的矩形相似D.所有的菱形相似【分析】A、根据等腰三角形的性质和相似三角形的判定定理进行判断;B、根据等腰三角形的性质和相似三角形的判定定理进行判断;C、D根据相似图形的定义进行判断.【解答】解:A、若一个等腰三角形的顶角为70°,而另一个的顶角为40°,则此两个等腰三角形不相似,故本选项错误;B、95°的角只能是顶角,则顶角为95°的两个等腰三角形相似,故本选项正确;C、所有的矩形是形状不唯一确定的图形,不一定是相似形,故本选项错误;D、所有的菱形是形状不唯一确定的图形,不一定是相似形,故本选项错误;故选:B.2.在△ABC中,∠C=90°,sinB=,则tanA的值为()A.B.1C.D.【分析】先根据特殊角的三角函数值得出∠B,从而得出∠A,即可计算出结果.【解答】解:∵在Rt△ABC中,∠C=90°,∵sinB=,∴∠B=30°,∴∠A=60°,∴tanA=.故选A.3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点8【分析】直接根据角平分线的性质进行解答即可.【解答】解:∵角平分线上的点到角两边的距离相等,∴凉亭的位置应选在△ABC三条角平分线的交点上.故选C.4.如图,在△ABC中,已知∠AED=∠B,DE=6;AB=10,AE=5,则BC的长为()A.3B.12C.D.7【分析】由公共角和已知条件证明△ADE∽△ACB,得出对应边成比例,即可求出BC的长.【解答】解:∵∠A=∠A,∠AED=∠B,∴△ADE∽△ACB,∴,即,解得:BC=12.故选:B.5.如图,在△ABC中,D、E分别为AB,AC的中点,连接BE,DC交于F点,则△DEF与△BDF的面积比为()A.1:2B.1:4C.4:9D.1:3【分析】证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,DE=BC,得出△DEF∽△CBF,得出对应边成比例EF:BF=DE:BC=1:2,得出△DEF与△BDF的面积比=EF:BF,即可得出结果.【解答】解:∵D、E分别为AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△DEF∽△CBF,∴EF:BF=DE:BC=1:2,∴△DEF与△BDF的面积比=EF:BF=1:2;故选:A.96.如图,D,E,F分别是OA,OB,OC的中点,下面的说法中:①△ABC与△DEF是位似图形;②△ABC与△DEF的相似比为1:2;③△ABC与△DEF的周长之比为2:1;④△ABC与△DEF的面积之比为4:1.正确的是()A.①②③B.①③④C.①②④D.②③④【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形,进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【解答】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,且相似比是:=2,③△ABC与△DEF的周长比等于相似比,即2:1,④根据面积比等于相似比的平方,则△ABC与△DEF的面积比为4:1.综上所述,正确的结论是:①③④.故选:B.7.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.【分析】由四边形ABCD是平行四边形,可得CD∥AB,AD∥BC,CD=AB,AD=BC,然后平行线分线段成比例定理,对各项进行分析即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴CD∥AB,AD∥BC,CD=AB,AD=BC,∴,故A正确;∴,∴,故B正确;10∴,故C错误;∴,∴,故D正确.故选C.8.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①②③④四个三角形.若OA:OC=OB:OD,则下列结论中一定正确的是()A.①②相似B.①③相似C.①④相似D.②相似【分析】由两边成比例和夹角相等(对顶角相等),即可得出△AOB∽△COD,即可得出结果.【解答】解:∵OA:OC=OB:OD,∠AOB=∠COD,∴△AOB∽△COD,C正确;故选:C.9.在△ABC中,∠C=90°,∠B=50°,AB=10,则BC的长为()A.10tan50°B.10cos50°C.10sin50°D.【分析】根据三角函数的定义即可求解.【解答】解:∵cosB=,∴BC=ABcosB=10cos50°.故选:B.10.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5mB.mC.mD.m【分析】可利用勾股定理及所给的比值得到所求的线段长.【解答】解:∵AB=10米,tanA==.11∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4,BC=2米.故选B.11.正方形网格中,∠AOB如图放置,则sin∠AOB=()A.B.C.D.2【分析】找出以∠AOB为内角的直角三角形,根据正弦函数的定义,即直角三角形中∠AOB的对边与斜边的比,就可以求出.【解答】解:如图,作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE=,∴sin∠AOB===.故选B.12.如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为()A.10米B.10米C.20米D.米【分析】首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB及CD=DC﹣BC=20构造方程关系式,进而可解,即可求出答案.【解答】解:∵在直角三角形ADB中,∠D=30°,∴=tan30°12∴BD==AB∵在直角三角形ABC中,∠ACB=60°,∴BC==AB∵CD=20∴CD=BD﹣BC=AB﹣AB=20解得:AB=10.故选A.13.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长是整数,则满足条件的点P有()A.2个B.3个C.4个D.5个【分析】首先过点O作OC⊥AB于点C,连接OB,由垂径定理可求得OP的取值范围为3≤OP≤5,而OP=3的点只有一个,OP=4的点有2个,OP=5的点有2个,故符合条件的点P有5个.【解答】解:过点O作OC⊥AB于点C,连接OB