F第2题图EDBACO3O1第2题图BACO22016年全国初中数学联赛(初三组)初赛试卷(考试时间:2016年3月4日下午3:00—5:00)班级::姓名:成绩:题号一二三四五合计得分评卷人复核人考生注意:1、本试卷共五道大题,全卷满分140分;2、用圆珠笔、签字笔或钢笔作答;3、解题书写不要超出装订线;4、不能使用计算器。一、选择题(本题满分42分,每小题7分)1、已知实数a、b满足31|2||3|aaba,则ba等于()A、1B、2C、3D、52、如图,点D、E分别在ABC的边AB、AC上,BE、CD相交于点F,设四边形EADF、BDF、BCF、CEF的面积分别为1S、2S、3S、4S,则31SS与42SS的大小关系为()A、4231SSSSB、4231SSSSC、4231SSSSD、不能确定3、对于任意实数a,b,c,d,有序实数对(a,b)与(c,d)之间的运算“”定义为:ba,dc,bcadbdac,.如果对于任意实数m,n都有nm,yx,mn,,那么yx,为()A、(0,1)B、(1,0)C、(-1,0)D、(0,-1)4、如图,已知三个等圆⊙1O、⊙2O、⊙3O有公共点O,点A、B、C是这些圆的其他交点,则点O一定是ABC的()A、外心B、内心C、垂心D、重心5、已知关于x的方程0|2|422kxx有四个根,则k的范围为()A、01kB、04kC、10kD、40k6、设在一个宽度为w的小巷内搭梯子,梯子的脚位于P点,小巷两边的墙体垂直于水平的地面。将梯子的顶端放于一堵墙的Q点时,Q离开地面的高度为k,梯子的倾斜角为45,将该梯子的顶端放于另一堵墙的R点时,R离开地面的高度为h,梯子的倾斜角为75,则小巷的宽度w等于()A、hB、kC、hkD、2kh二、填空题(本大题满分28分,每小题7分)7、化简3232的值为.8、如果关于x的实系数一元二次方程033222kxkx有两个实数根、,那么2211的最小值是.9、设四位数abcd满足bdcad101001000103,则这样的四位数有个.10、如图,MN是⊙O的直径,2MN,点A在⊙O上,30AMN,B为⌒AN的中点,P是直径MN上一动点,则PBPA的最小值为.三、(本大题满分20分)11、设实数a,b,c满足:0abc且22223214cbacba,求bcacabcba22232的值。OMNPA四、(本大题满分25分)12、已知抛物线3122mxmxy与x轴相交于两点A、B(点A在x轴的正半轴上,点B在x轴的负半轴上),与y轴交于点C.(1)求m的取值范围;(2)若1:3||:||OBOA,在该抛物线对称轴右边图像上求一点P的坐标,使得BCOPCO.五、(本大题满分25分)13、如图,等腰三角形ABC中,ACAB,D,E分别在AB,AC边上,且AEAD.P在AB的延长线上,QR分别在线段CE、DB上,且DRCQBP,连结直线PQ与BC交于点L,QR与CD,BE分别交于点M,N.求证:(1)LQPL;(2)NRMQLQMERNPDBA2016年全国初中数学联赛初赛试卷(考试时间:2016年3月13日下午3:00—5:00)一、选择题(本题满分42分,每小题7分)1、C.2、C.3、D.4、C.5、B.6、A.二、填空题(本大题满分28分,每小题7分)7、6.8、18.9、3.10、2.三、(本大题满分20分)11、解:由14(a2b2c2)(a2b3c)2,得13a210b25c24ab6ac12bc0,·············································(5分)配方得(3ac)2(2ab)2(3b2c)20,·············································(10分)所以3ac0,2ab0,3b2c0,即c3a,b2a.·······································································(15分)代入22223abcabacbc得22223abcabacbc222222827236aaaaaa3611.···········································(分)解法二:由14(a2b2c2)(a2b3c)2,得13a210b25c24ab6ac12bc0,·············································(5分)5[c2(365ab)c365ab2]13a210b24ab2(36)5ab0,5(c365ab)2565a2145b2565ab0,所以5(c365ab)2145(2ab)20,···············································(10分)由此得,c365ab0,2ab0,解得b2a,c3a.····································································(15分)代入22223abcabacbc得22223abcabacbc222222827236aaaaaa3611.···········································(分)四、(本大题满分25分)12、解:(1)由已知得,x22(m1)xm3有两个不相同的实数解,所以[2(m1)]4(m3)4m12m16(2m3)3>0,可知m是任意实数.·································································(5分)又因为点A在x轴的负半轴上,点B在x轴的正半轴上.所以方程,x22(m1)xm3的两根一正一负,所以(m3)<0,解得m>3.所以所求m的取值范围是m>3.···············································(10分)(2)解法一:设点A(a,0),B(b,0),a>0,b<0,则a3b,且ab2(m1),ab(m3),解得m0.函数解析式为yx22x3.·······················································(15分)所以A(3,0),B(1,0),C(0,3)。由∠PCO∠BCO可知BC与PC关于直线OC对称。作B关于OC的对称点B′,则B′(1,0),设直线PC是一次函数ykxb的图象,则30,01kbkb,解得3,3kb。即PC是一次函数y3x3的图象。把y3x3代入yx22x3,得3x3x22x3,·································································(20分)解得x,x,当x时,y,此时点P与点C重合,不合题意,舍去;当x时,y12,此时点P的坐标为(5,12).故抛物线对称轴右边图象上有一点P(5,12),使得∠PCO∠BCO.··························································································(25分)解法二:设点A(a,0),B(b,0),a>0,b<0,则a3b,且ab2(m1),ab(m3),解得m0.函数解析式为yx22x3.·······················································(15分)所以A(3,0),B(1,0),C(0,3)。设P点的坐标为(c,c22c3)(c>1).当1<c≤2时,∠PCO≥90°>∠BCO.当c>2时,tan∠PCO23(23)ccc,又tan∠BCO13,由∠PCO∠BCO得tan∠PCOtan∠BCO.即23(23)ccc13,····························································(分)解得c5.当x时,y12,此时点P的坐标为(5,12).故抛物线对称轴右边图象上有一点P(5,12),使得∠PCO∠BCO.··························································································(25分)五、(本大题满分25分)13、证明:(1)过P作PH平行于AC交直线BC于点H,连结PH,BH。则∠PHB∠ACB∠ABC∠PBH,OyxCABPHKLNMRQPEBCAD所以HPBPCQ。············································(5分)又∠HLP∠CLQ,∠PHL∠QCL,所以△HLP≌△CLQ.所以PLLQ.··········································································(10分)法二:过Q作QX∥BC交AB于点X,XLNMRQPEBCAD所以∠AQX∠ACB∠ABC∠AXQ,所以AXAQ。故BXCQBP。·······································································(5分)又因为QX∥LB,所以PLLQ.··········································································(10分)(2)设直线QR交直线DE于点S,交直线BC于点T,则DRRBDSBT,CQQECTES,由DRCQ,RBQE,所以DSBTCTES,即DSCTBTES,又DSCTDMCM,BTESBNEN,所以DMCMBNEN,因此DMCMCMBNENEN,即CDCMBEEN。由CDBE得CMEN.······························································(20分)取DB,EB中点F,G,连结FG,分别交BE、CD、QR于U、V、K,因为FRGQ,由(1)的结论知RKQK。设BE与CD交于点O,则△OUV为等腰三角形。由CMEN得NUMV.OVUKFGSTLNMRQPEBCAD由(1)的结论知NKMK。所以MQNR。·········································································(25分)