最新人教版八年级数学上册-全册课件全集(1192张)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

最新人教版八年级数学上册全册课件全集11.1.1三角形的边第十一章三角形导入新课讲授新课当堂练习课堂小结八年级数学上(RJ)情境引入学习目标1.认识三角形并会用几何语言表示三角形,了解三角形分类.2.掌握三角形的三边关系.(难点)3.运用三角形三边关系解决有关的问题.(重点)导入新课埃及金字塔氨气分子结构示意图飞机机翼问题:(1)从古埃及的金字塔到现代的飞机,从宏伟的建筑物到微小的分子结构,都有什么样的形象?(2)在我们的生活中有没有这样的形象呢?试举例.三角形的概念一问题1:观察下面三角形的形成过程,说一说什么叫三角形?定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫作三角形.问题2:三角形中有几条线段?有几个角?ABC边:线段AB,BC,CA是三角形的边.顶点:点A,B,C是三角形的顶点,角:∠A,∠B,∠C叫作三角形的内角,简称三角形的角.有三条线段,三个角讲授新课记法:三角形ABC用符号表示________.边的表示:三角形ABC的边AB、AC和BC可用小写字母分别表示为________.△ABCc,a,b边c边b边a顶点C角角角顶点A顶点BBCA在△ABC中,AB边所对的角是:∠A所对的边是:∠CBC再说几个对边与对角的关系试试.三角形的对边与对角:辨一辨:下列图形符合三角形的定义吗?不符合不符合不符合①位置关系:不在同一直线上;②联接方式:首尾顺次相接.三角形应满足以下两个条件:要点提醒表示方法:三角形用符号“△”表示;记作“△ABC”,读作“三角形ABC”,除此△ABC还可记作△BCA,△CAB,△ACB等.基本要素:三角形的边:边AB、BC、CA;三角形的顶点:顶点A、B、C;三角形的内角(简称为三角形的角):∠A、∠B、∠C.特别规定:三角形ABC的三边,一般的顶点A所对的边记作a,顶点B所对的边记作b,顶点C所对的边记作c.5个,它们分别是△ABE,△ABC,△BEC,△BCD,△ECD.找一找:(1)图中有几个三角形?用符号表示出这些三角形?ABCDE(2)以AB为边的三角形有哪些?△ABC、△ABE.(3)以E为顶点的三角形有哪些?△ABE、△BCE、△CDE.(4)以∠D为角的三角形有哪些?△BCD、△DEC.(5)说出△BCD的三个角和三个顶点所对的边.△BCD的三个角是∠BCD、∠BDC、∠CBD.顶点B所对应的边为DC,顶点C所对应的边为BD,顶点D所对应的边为BC.ABCDE三角形的分类二问题1:观察下列三角形,说一说,按照三角形内角的大小,三角形可以分为哪几类?锐角三角形、直角三角形、钝角三角形.腰不等边三角形等腰三角形等边三角形底边顶角底角问题2:你能找出下列三角形各自的特点吗?三边均不相等有两条边相等三条边均相等三条边各不相等的三角形叫做不等边三角形;有两条边相等的三角形叫做等腰三角形;三条边都相等的三角形叫做等边三角形.思考:等边三角形和等腰三角形之间有什么关系?总结归纳三角形按边分类不等边三角形等腰三角形我们可以把三角形按照三边情况进行分类腰和底不等的等腰三角形等边三角形(三边都相等的三角形)判断:(2)等边三角形是特殊的等腰三角形.()(1)一个钝角三角形一定不是等腰三角形.()√×(3)等腰三角形的腰和底一定不相等.()×(4)等边三角形是锐角三角形.()(5)直角三角形一定不是等腰三角形.()×√在A点的小狗,为了尽快吃到B点的香肠,它选择AB路线,而不选择ACB路线,难道小狗也懂数学?CBA三角形的三边关系三AC+CBAB(两点之间线段最短)ABC路线1:从A到C再到B的路线走;路线2:沿线段AB走.请问:路线1、路线2哪条路程较短,你能说出根据吗?解:路线2较短;两点之间线段最短.由此可以得到:ABBCACBCABACACBCAB归纳总结三角形两边的和大于第三边.三角形两边的差小于第三边.议一议1.在同一个三角形中,任意两边之和与第三边有什么大小关系?2.在同一个三角形中,任意两边之差与第三边有什么大小关系?3.三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?理由是什么?例1有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?判断三条线段是否可以组成三角形,只需说明两条较短线段之和大于第三条线段即可.解:取长度为2cm的木棒时,由于2+5=78,出现了两边之和小于第三边的情况,所以它们不能摆成三角形.取长度为13cm的木棒时,由于5+8=13,出现了两边之和等于第三边的情况,所以它们也不能摆成三角形.归纳典例精析例2一个三角形的三边长分别为4,7,x,那么x的取值范围是()A.3<x<11B.4<x<7C.-3<x<11D.x>3判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.归纳解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.A例3用一条长为18cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,那么各边的长是多少?(2)能围成有一边的长是4cm的等腰三角形吗?为什么?解:(1)设底边长为xcm,则腰长为2xcm,x+2x+2x=18.解得x=3.6.所以三边长分别为3.6cm、7.2cm、7.2cm.(2)因为长为4cm的边可能是腰,也可能是底边,所以需要分情况讨论.①若底边长为4cm,设腰长为xcm,则有4+2x=18.解得x=7.②若腰长为4cm,设底边长为xcm,则有2×4+x=18.解得x=10.因为4+4<10,不符合三角形两边的和大于第三边,所以不能围成腰长是4cm的等腰三角形.由以上讨论可知,可以围成底边长是4cm的等腰三角形.例4如图,D是△ABC的边AC上一点,AD=BD,试判断AC与BC的大小.解:在△BDC中,有BD+DCBC(三角形的任意两边之和大于第三边).又因为AD=BD,则BD+DC=AD+DC=AC,所以ACBC.当堂练习1.下列长度的三条线段能否组成三角形?为什么?(1)3,4,8()(2)2,5,6()(3)5,6,10()(4)3,5,8()不能能能不能4.如果等腰三角形的一边长是4cm,另一边长是9cm,则这个等腰三角形的周长为______________.3.如果等腰三角形的一边长是5cm,另一边长是8cm,则这个等腰三角形的周长为______________.2.五条线段的长分别为1cm,2cm,3cm,4cm,5cm,以其中三条线为边长可以构成________个三角形.322cm18cm或21cm5.若三角形的两边长分别是2和7,第三边长为奇数,求第三边的长.解:设第三边长为x,根据三角形的三边关系,可得,7-2<x<7+2,即5<x<9,又x为奇数,则第三边的长为7.6.若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.拓展提升课堂小结三角形定义及其基本要素顶点、角、边分类按角分类按边分类分类不重不漏三边关系原理两点之间线段最短内容两边之和大于第三边两边之差小于第三边|a-b|xa+b(ab,x为第三边)应用11.1.2三角形的高、中线与角平分线第十一章三角形导入新课讲授新课当堂练习课堂小结八年级数学上(RJ)教学课件学习目标1.掌握三角形的高,中线及角平分线的概念.(重点)2.掌握三角形的高,中线及角平分线的画法.3.掌握钝角三角形的两短边上高的画法.(难点)复习回顾导入新课定义图示垂线线段中点角平分线OBAAB当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线把一条线段分成两条相等的线段的点一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线你还记得“过一点画已知直线的垂线”吗?012345678910012345012345放、靠、过、012345012345012345012345画.思考:过三角形的一个顶点,你能画出它的对边的垂线吗?复习导入导入新课三角形的高一三角形的高的定义A从三角形的一个顶点,BC向它的对边所在直线作垂线,顶点和垂足D之间的线段叫作三角形的高线,简称三角形的高.如右图,线段AD是BC边上的高.和垂足的字母.注意!标明垂直的记号012345012345讲授新课思考:你还能画出一条高来吗?一个三角形有三个顶点,应该有三条高.(1)你能画出这个三角形的三条高吗?(2)这三条高之间有怎样的位置关系?O(3)锐角三角形的三条高是在三角形的内部还是外部?锐角三角形的三条高交于同一点;锐角三角形的三条高都在三角形的内部.锐角三角形的三条高如图所示;直角边BC边上的高是;直角边AB边上的高是;(2)AC边上的高是;直角三角形的三条高ABC(1)画出直角三角形的三条高,ABBC它们有怎样的位置关系?直角三角形的三条高交于直角顶点.BD钝角三角形的三条高(1)你能画出钝角三角形的三条高吗?ABCDEF(2)AC边上的高呢?AB边上呢?BC边上呢?BFCEADABCDF(3)钝角三角形的三条高交于一点吗?(4)它们所在的直线交于一点吗?OE钝角三角形的三条高不相交于一点;钝角三角形的三条高所在直线交于一点.视频:画钝角三角形的高例1作△ABC的边AB上的高,下列作法中,正确的是()典例精析方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.D例2如图所示,在△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,且AD=4,若点P在边AC上移动,则BP的最小值为____.方法总结:可利用面积相等作桥梁(但不求面积)求三角形的高,此解题方法通常称为“面积法”.245例3如图,已知AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°.∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°-∠B-∠BAD=180°-30°-50°=100°.视频:平均分蛋糕在三角形中,连接一个顶点与它对边中点的线段,叫作这个三角形的中线(median).AE是BC边上的中线.三角形的“中线”BACABE=ECE三角形的中线二(1)在纸上画出一个锐角三角形,确定它的中线.你有什么方法?它有多少条中线?它们有怎样的位置关系?议一议三条中线,交于一点(2)钝角三角形和直角三角形的中线又是怎样的?折一折,画一画,并与同伴交流.三角形的三条中线交于一点,这个交点就是三角形的重心.要点归纳典例精析例4在△ABC中,AC=5cm,AD是△ABC的中线,若△ABD的周长比△ADC的周长大2cm,则BA=________.提示:将△ABD与△ADC的周长之差转化为边长的差.7cm三角形的角平分线三思考在一张薄纸上任意画一个三角形,你能设法画出它的一个内角的平分线吗?你能通过折纸的方法得到它吗?BAC用量角器画最简便,用圆规也能.在一张纸上画出一个一个三角形并剪下,将它的一个角对折,使其两边重合.折痕AD即为三角形的∠A的平分线.ABCAD三角形的角平分线的定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫三角形的角平分线.12ABCD注意:“三角形的角平分线”是一条线段.∠1=∠2每人准备锐角三角形、钝角三角形和直角三角形纸片各一个.(1)你能分别画出这三个三角形的三条角平分线吗?(2)你能用折纸的办法得到它们吗?(3)在每个三角形中,这三条角平分线之间有怎样的位置关系?做一做三角形的三条角平分线交于同一点.三角形角平分线的性质解:∵AD是△ABC的角平分线,∠BAC=68°,∴∠DAC=∠BAD=34°.在△ABD中,∠B+∠ADB+

1 / 1193
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功