走向高考·数学路漫漫其修远兮吾将上下而求索高考二轮总复习第一部分微专题强化练一考点强化练第一部分3基本初等函数Ⅰ考向分析考题引路强化训练231易错防范4考向分析1.考查指数式、对数式的计算与求值或分段函数求值,一般以选择、填空题呈现,难度为容易题.2.“对数值”、“幂值”大小的比较,解含指数、对数式的不等式,一般以选择题、填空题方式呈现,主要考查幂、指、对函数的单调性等,难度为容易题或中等题.3.幂、指、对函数的图象变化规律,以识图、用图为主要考查目标,难度为中等题或易题,难度较大的题有时也出.重点考查数形结合与等价转换两种数学思想.考题引路[立意与点拨]考查对数函数、函数的性质与均值不等式.解答本题先按对数的运算法则,将p、q、r变形,再结合基本不等式与对数函数单调性作判断,也可以取特值检验.[答案]B考例1(2015·陕西理,9)设f(x)=lnx,0ab,若p=f(ab),q=fa+b2,r=12(f(a)+f(b)),则下列关系式中正确的是()A.q=rpB.p=rqC.q=rpD.p=rq[解析]由题意可得,p=f(ab)=lnab=12(lna+lnb),q=f(a+b2)=lna+b2,r=12[f(a)+f(b)]=12(lna+lnb),所以p=r;又因为a+b≥2ab,当且仅当a=b时等号成立,故a+b2>ab,因为f(x)=lnx为增函数,所以f(a+b2)>f(ab),因此p=r<q.故本题正确答案为B.易错防范案例(2015·安徽黄山第二次质检)若函数f(x)的图象关于原点成中心对称,且当x≥0时,f(x)=15x+101-m,则f(log512)=()A.1101×102B.1102×103C.1201×102D.1202×203[易错分析]一是不能依据所给条件判断函数的奇偶性,依据奇偶性求出m的值;二是不能利用对数恒等式求值.[解答]由f(x)的图象关于原点成中心对称可得函数f(x)是奇函数,所以f(0)=1102-m=0,得m=1102,所以f(log512)=f(-log52)=-f(log52)=-(15log52+101-1102)=1102-1103=1102×103,故选B.[警示]奇函数的图象关于原点对称,偶函数的图象关于y轴对称;纠错的方法一是注意函数性质中常用结论的记忆,例如奇函数在x=0时有意义,一定有f(0)=0,偶函数具有性质f(x)=f(|x|)等.二是对数的性质、运算法则及对数恒等式、换底公式等基本知识的记忆.这样才能够提高解题速度.