必修五第一章解三角形测试(总分150)一、选择题(每题5分,共50分)1、在△ABC中,a=3,b=7,c=2,那么B等于()A.30°B.45°C.60°D.120°2、在△ABC中,a=10,B=60°,C=45°,则c等于()A.310B.1310C.13D.3103、在△ABC中,a=32,b=22,B=45°,则A等于()A.30°B.60°C.30°或120°D.30°或150°4、在△ABC中,3AB,1AC,∠A=30°,则△ABC面积为()A.23B.43C.23或3D.43或235、在△ABC中,已知bccba222,则角A为()A.3B.6C.32D.3或326、在△ABC中,面积22()Sabc,则sinA等于()A.1517B.817C.1315D.13177、已知△ABC中三个内角为A、B、C所对的三边分别为a、b、c,设向量(,)pacb,(,)qbaca.若//pq,则角C的大小为()A.6B.3C.2D.238、已知锐角三角形的边长分别为1,3,a,则a的范围是()A.10,8B.10,8C.10,8D.8,109、在△ABC中,已知CBAsincossin2,那么△ABC一定是()A.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形10、在△ABC中,3,13,4ABBCAC,则AC上的高为()nm3111QPBAA.322B.332C.32D.33二、填空题(每小题5分,共20分)11、在△ABC中,若∠A:∠B:∠C=1:2:3,则cba::12、已知三角形两边长为1和3,第三边的中线长为1,则第三边长为13、若三角形两边长为1和3,第三边上的中线长为1,则三角形的外接圆半径为14、在△ABC中BC=1,3B,当△ABC面积为3时,tanC三、解答题(本大题共小题6小题,共80分)15、(本小题14分)在△ABC中,已知210AB,A=45°,在BC边的长分别为20,3320,5的情况下,求相应角C。16、(本小题14分)在△ABC中,BC=a,AC=b,a,b是方程02322xx的两个根,且1cos2BA。求:(1)角C的度数;(2)AB的长度。17、(本小题12分)在△ABC中,角A、B、C所对的三边分别为a、b、c,22sin3cos,7CCc,又△ABC的面积为332.求:(1)角C大小(2)ab的值18.(本小题12分)在△ABC中,10ba,cosC是方程02322xx的一个根,求△ABC周长的最小值。19.(本小题14分)在△ABC中,若BACBAcoscossinsinsin.(1)判断△ABC的形状;(2)在上述△ABC中,若角C的对边1c,求该三角形内切圆半径的取值范围。20.如图所示,平面上有四点A、B、Q、P,其中A、B为定点,且3AB,P、Q为动点,满足1APPQQB,△APB与△PQB的面积分别为,mn.(1)设30A,求Q(2)求22mn的最大值必修五第一章测试答案一、选择题(每题5分,共50分)12345678910CBCBCBBBBB二、填空题(每小题5分,共20分)11.12.213.114.23三、解答题(本大题共小题6小题,共80分)15、(本小题14分)解:由正弦定理得BCBCAABC10sinsin(1)当BC=20时,sinC=21;ABBCCA30C°(2)当BC=3320时,sinC=23;ABBCAB45sinC有两解60C或120°(3)当BC=5时,sinC=21;C不存在16、(本小题14分)解:(1)21coscoscosBABACC=120°(2)由题设:322baab120cos2cos222222abbaCBCACBCACAB102322222abbaabba10AB17、(本小题12分)(1)60C(2)5ab18.(本小题12分)解:02322xx21,221xx又Ccos是方程02322xx的一个根21cosC由余弦定理可得:abbaabbac2222212则:7551010022aaac当5a时,c最小且3575c此时3510cba△ABC周长的最小值为351019.(本小题14分)解:(1)由BACBAcoscossinsinsin可得12sin22C0cosC即C=90°△ABC是以C为直角顶点得直角三角形(2)内切圆半径cbar211sinsin21BA212214sin22A内切圆半径的取值范围是212,020.(1)60Q(2)7820·2007·新疆奎屯wxckt@126.com特级教师王新敞源头学子小屋本小题主要考查等差数列,等比数列等基础知识,考查基本运算能力·2007·新疆奎屯wxckt@126.com特级教师分·2007·新疆奎屯wxckt@126.com特级教师王新敞源头学子小屋(I)解:由题设得11()2(2)nnnnababn≥,········································1分即12nncc(2n≥)················································································2分易知{}nc是首项为113ab,公差为2的等差数列,···········································3分通项公式为21ncn·2007·新疆奎屯wxckt@126.com特级教师王新敞源头学子小屋·················································································4分2(321)22nnnSnn············································································6分(II)解:由题设得111()(2)2nnnnababn≥,令nnndab,则11(2)2nnddn≥·2007·新疆奎屯wxckt@126.com特级教师王新敞源头学子小屋易知{}nd是首项为111ab,公比为12的等比数列,··········································7分通项公式为112nnd·2007·新疆奎屯wxckt@126.com特级教师王新敞源头学子小屋···················································································8分由12112nnnnnabnab,························································································9分解得1122nnan,··················································································10分3298a··································································································11分3332927788bca··········································································12分12nnTaaa22111122222nn()()··························································13分21122nnn·2007·新疆奎屯wxckt@126.com特级教师王新敞源头学子小屋···················································································14分