1北山中学初2015级初三上期第一学月月考数学参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确答案,请将正确答案的代号填在答卷的对应位置。题号123456789101112答案ACBCDAADDCBC二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案填在答卷的对应位置。13.____3___14._0562xx_15.上,y轴(或x=0)16.2)2(2xy或_242xxy17.____20%_____18.___①③____三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.解方程:(x-1)2-4(x-1)+4=020.已知二次函数y=-x2+4x-2(1)把它化成顶点式为2)2-(-2xy;·········2分(2)在给出的坐标系中画出函数的图象(略)四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.关于x的一元二次方程230xxk有两个不相等的实数根.(1)求k的取值范围.(2)请选择一个k的负整数值,并求出方程的根.解:0)21(2x·········4分∴321xx··············7分解法二:原方程化简得x2-6x+9=0·····2分即(x-3)2=0····4分∴321xx··············7分(其他做法也可)解:(1)由题意得△=)(14)3(422kacb······························2分∴9+4k0···········································4分解得49k···········································6分(2)当k=-2时,原方程为0232xx,···································8分解得,21x,12x······································10分当k=-1时(略)列表正确······4分画图正确······7分2ABCD16米草坪1米0.5米2米2.5米22.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个矩形的草坪ABCD.(1)围成的矩形草坪ABCD的面积为120平方米时.求该矩形草坪BC边的长.(2)围成的矩形草坪ABCD的面积可以是140平方米吗?为什么?解:(1)设AB长为xm,则BC为(32-2x)m,···············1分由题意得120)232(xx··························3分解得x=6或x=10··································4分当x=6时,32-2x=20>16,不合题意,舍去当x=10时,32-2x=12<16,符合题意···················5分答:该矩形草坪BC边的长为12米。·······················6分(2)设AB长为xm,则BC为(32-2x)m,由题意得140)232(xx·······················7分∴070162xx∴△=0247014)16(422acb·········8分∴此方程无实数根·····························9分∴不能围成面积是140平方米的矩形草坪ABCD。··········10分23.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了个简易秋千,栓绳子的地方离地面都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子最低点距离地面的距离为多少米?解:(1)如图,建立直角坐标系.·······························2分由图可设抛物线的解析式为:caxy2.··············4分把(0.5,1)、(1,2.5)代入得:5.21)5.0(2caca····································6分解得2a,21c··································8分∴绳子所在抛物线的函数关系式为:5.022xy.∵当x=0时,5.05.022xy,····················9分∴绳子最低点距离地面的距离为0.5米.·····················10分(其他建立平面直角坐标系的方法也可)324.某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元).设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元,(1)求y与x的函数关系式,并直接写出x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?解:(1))10200)(10(xxy·················································4分=-10x2+100x+200·······································································其中0≤≤12;··················································5分(2)2250)5(1020001001022xxxy·······························7分∵满足0≤≤12,·····················································8分∴5x时,2250最大y·····················································9分答:每件商品的售价定为65元时,每个月可获得最大利润,最大月利润是2250元。·······10分五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.已知ABC△的两边AB、AC的长是关于x的一元二次方程22(23)320xkxkk的两个实数根,第三边BC的长为5.(1)当k为何值时,ABC△是直角三角形;(2)当k为何值时,ABC△是等腰三角形,并求出ABC△的周长.解:(1)△=01)23(14)32(4222kkkacb·························1分∴,11kx,22kx·······················································2分又由直角三角形三边关系得:25)2()1(22kk···①或22)2(25)1(kk···②·····················4分解①得:k=-5或k=2又因为k+1和k+2是直角三角形的边长,故为正数,所以k=2························5分解②得:k=11答:当k=2或k=11时,ABC△是直角三角形。·······················6分(2)∵△ABC的两边AB、AC的长是这个方程的两个实数根,由(1)知,AB≠AC,△ABC第三边BC的长为5,且△ABC是等腰三角形,∴必然有AB=5或AC=5,即x=5是原方程的一个解.························8分将x=5代入方程0)12(22kkxkx,25-5(2k+1)+k2+k=0,解得k=4或k=5.························10分当k=3时,x的另外一个根是4,△ABC的周长为14;························11分当k=4时,x的另外一个根是6,△ABC的周长是16。························12分426.已知抛物线y=ax2+2x+c的图像与x轴交于点A(3,0)和点C,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标;(3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)∵抛物线cxaxy22的图象经过点A(3,0)和点B(0,3),∴3069cca,······································································2分解得a=-1,c=3,······································································3分∴抛物线的解析式为:322xxy.···················································4分(2)对称轴为x=ab2=1,令322xxy,解得,31x12x,∴C(-1,0).·······································································5分如图1所示,连接AB,与对称轴x=1的交点即为所求之D点,由于A、C两点关于对称轴对称,则此时DB+DC=DB+DA=AB最小.··································6分设直线AB的解析式为y=kx+b,由A(3,0)、B(0,3)可得:303bbk,解得k=-1,b=3,···················································7分∴直线AB解析式为y=-x+3.当x=1时,y=2,∴D点坐标为(1,2).················································8分(3)结论:存在.如图2所示,设P(x,y)是第一象限的抛物线上一点,过点P作PN⊥x轴于点N,则ON=x,PN=y,AN=OA-ON=3-x.S△ABP=S梯形PNOB+S△PNA-S△AOB······························································9分=21(OB+PN)ON+21PN×AN-21OA×OB=21(3+y)x+21y(3-x)-21×3×3=23(x+y)-29,······························································10分∵P(x,y)在抛物线上,∴322xxy,代入上式得:S△ABP=23(x+y)-29=827)23(232x,∴当x=23时,S△ABP取得最大值.···················································11分当x=23时,322xxy=415,∴P(23,415).所以,在第一象限的抛物线上,存在一点P,使得△ABP的面积最大;P点的坐标为(23,415).···················································12分5