骆店中学九年级上数学月考试题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

骆店中学九年级数学月考试题一、选择题(3×10=30)1.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.1B.0C.﹣1D.22.方程x2=3x的解是()A.x=3B.x=0C.x1=3,x2=0D.x1=﹣3,x2=03.一元二次方程x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断4.若a+b+c=0,则关于x的一元二次方程ax2+bx+c=0(a≠0)有一根是()A.1B.﹣1C.0D.无法判断5.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=36.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x﹣2)2﹣3D.y=(x+2)2﹣37.二次函数y=x2﹣2x+3的图象的顶点坐标是()A.(1,-4)B.(-1,2)C.(1,2)D.(0,3)8.把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3B.y=﹣(x+1)2﹣3C.y=-(x﹣1)2+3D.y=﹣(x+1)2+39.在同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是()A.B.C.D.10.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()A.5个B.4个C.3个D.2个二、填空题:(3×6=18)11.若抛物线y=(m-1)mmx2开口向下,则m=___.12.抛物线y=x2+2与y轴的交点坐标为.13.一元二次方程kx2+x+4=0有两个实数根,则k的取值范围是________.14.设a,b是方程x2+x﹣2014=0的两个实数根,则a2+2a+b的值为__________.15.若抛物线y=x2﹣bx+9的顶点在x轴上,则b的值为.16.已知二次函数2(1)1yxmx,当x>1时,y随x的增大而增大,而m的取值范围是。三、解答题()17.选择适当方法解下列方程:(12分)(1)(x﹣5)2=16(2)x2+2x-9999=0(3)x2﹣2x﹣3=0(4)x(x﹣2)=2x+1.18.已知抛物线y=x2﹣2x﹣8.(6分)(1)试说明该抛物线与x轴一定有两个交点.(2)若该抛物线与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.19.一个涵洞成抛物线形,它的截面如图.现测得,当水面宽AB=1.6m时,涵洞顶点O与水面的距离为2.4m.ED离水面的高FC=1.5m,求涵洞ED宽是多少?是否会超过1m?(6分)20.已知a、b、c分别是△ABC中∠A、∠B、∠C所对的边,且关于x的方程(c﹣b)x2+2(b﹣a)x+(a﹣b)=0有两个相等的实数根,试判断△ABC的形状.(6分)21.如图,7×8网格的每个小正方形边长均为1,将抛物线y1=x2﹣1的图象向右平移2个单位得到抛物线y2.(6分)(1)请直接写出抛物线y2的函数解析式.(2)求出图中阴影部分的面积.(3)若将抛物线y2沿x轴翻折,求翻折后的抛物线解析式.19题图10题图22.(6分)如图,A(﹣1,0),B(2,﹣3)两点都在一次函数y1=﹣x+m与二次函数y2=ax2+bx﹣3的图象上.(1)求m和a,b的值;(2)请直接写出当y1>y2时,自变量x的取值范围.23(8分).如图所示,在△ABC中,∠C=90.AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.24.(10分)某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.CABPQ25.(12分)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功