2018-2019学年贵州省黔西南州九年级(上)期中模拟试卷一.选择题(共10小题,满分30分)1.下列是我国四座城市的地铁标志图,其中是中心对称图形的是()A.B.C.D.2.下列函数中,y关于x的二次函数是()A.y=ax2+bx+cB.y=x(x﹣1)C.D.y=(x﹣1)2﹣x23.已知点M在第一象限,若点N与点M关于原点O对称,则点N在()A.第一象限B.第二象限C.第三象限D.第四象限4.方程①;②3y2﹣2y=﹣1;③2x2﹣5xy+3y2=0;④中,是一元二次方程的为()A.①B.②C.③D.④5.关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根B.有两相等实数根C.无实数根D.不能确定6.关于x的方程(2﹣a)x2+5x﹣3=0有实数根,则整数a的最大值是()A.1B.2C.3D.47.已知一元二次方程1﹣(x﹣3)(x+2)=0,有两个实数根x1和x2,(x1<x2),则下列判断正确的是()A.﹣2<x1<x2<3B.x1<﹣2<3<x2C.﹣2<x1<3<x2D.x1<﹣2<x2<38.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.9.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.10.已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1B.2C.22D.30二.填空题(共6小题,满分18分,每小题3分)11.将y=x2﹣2x+3化成y=a(x﹣h)2+k的形式,则y=.12.一元二次方程x2﹣4x+2=0的两根为x1,x2,则x12﹣4x1+2x1x2的值为.13.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=°.14.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.15.如果二次函数y=x2﹣8x+m﹣1的顶点在x轴上,那么m=.16.把抛物线y=x2﹣2x+3沿x轴向右平移2个单位,得到的抛物线解析式为.三.解答题(共8小题,满分47分)17.(8分)解方程:(1)2y2+5y=7.(公式法)(2)y2﹣4y+3=0(配方法)18.(8分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.19.(7分)淮北市某中学七年级一位同学不幸得了重病,牵动了全校师生的心,该校开展了“献爱心”捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该校能收到多少捐款?20.(7分)某景区商店以2元的批发价进了一批纪念品.经调查发现,每个定价3元,每天可以能卖出500件,而且定价每上涨0.1元,其销售量将减少10件.根据规定:纪念品售价不能超过批发价的2.5倍.(1)当每个纪念品定价为3.5元时,商店每天能卖出件;(2)如果商店要实现每天800元的销售利润,那该如何定价?21.(8分)四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,AB=7,(1)求DE的长度;(2)BE与DF的位置关系如何?22.(9分)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,求AA′的长.23.如图,某小区规划在长32米,宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为570米2,问小路应为多宽?24.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过B点,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)求证:对任意实数m,点P(m,m2﹣5)都不在此抛物线上.参考答案一.选择题1.D.2.B.3.C.4.B.5.A.6.D.7.B.8.D.9.C.10.D.二.填空题11.(x﹣1)2+2.12.2.13.55°.14.1.15.17.16.y=(x﹣3)2+2三.解答题17.解:(1)原方程整理成一般式可得2y2+5y﹣7=0,∵a=2,b=5,c=﹣7,∴△=25﹣4×2×(﹣7)=81>0,则y=,∴y=1或y=﹣;(2)∵y2﹣4y=﹣3,∴y2﹣4y+4=﹣3+4,即(y﹣2)2=1,则y﹣2=1或y﹣2=﹣1,解得:y=3或y=1.18.解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.19.解:(1)捐款增长率为x,根据题意得:10000(1+x)2=12100,解得:x1=0.1,x2=﹣2.1(舍去).则x=0.1=10%.答:捐款的增长率为10%.(2)根据题意得:12100×(1+10%)=13310(元),答:第四天该校能收到的捐款是13310元.20.解:(1)∵每个定价3元,每天可以能卖出500件,而且定价每上涨0.1元,其销售量将减少10件,∴当每个纪念品定价为3.5元时,商店每天能卖出:500﹣10×=450(件);故答案为:450;(2)设实现每天800元利润的定价为x元/个,根据题意,得(x﹣2)(500﹣×10)=800.整理得:x2﹣10x+24=0.解之得:x1=4,x2=6.∵物价局规定,售价不能超过批发价的2.5倍.即2.5×2=5<6∴x2=6不合题意,舍去,得x=4.答:应定价4元/个,才可获得800元的利润.21.解:(1)根据正方形的性质可知:△AFD≌△AEB,即AE=AF=4,∠EAF=90°,∠EBA=∠FDA;∴DE=AD﹣AE=7﹣4=3;(2)∵∠EAF=90°,∠EBA=∠FDA,∴延长BE与DF相交于点G,则∠GDE+∠DEG=90°,∴BE⊥DF,即BE与DF是垂直关系.22.解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2∴∠CAB=30°,AB=4,∵由已知可得:AB=A′B′=4,AC=A′C,∴∠A′AC=∠A′=30°,又∵∠A′B′C=∠B=60°∴∠A′AC=∠B′CA=30°,∴AB′=B′C=2,∴AA′=2+4=6.23.解:设小路宽为x米,则小路总面积为:20x+20x+32x﹣2•x2=32×20﹣570,整理,得2x2﹣72x+70=0,x2﹣36x+35=0,∴(x﹣35)(x﹣1)=0,∴x1=35(舍),x2=1,∴小路宽应为1米.24.(1)解:∵抛物线顶点在直线x=上,∴﹣=,解得b=﹣,∵抛物线y=x2+bx+c经过点B(0,4),∴c=4,∴抛物线对应的函数关系式为y=x2﹣x+4;(2)解:四边形ABCD是菱形时,点C、D在该抛物线上.理由如下:∵A(﹣3,0),B(0,4),∴OA=3,OB=4,∴AB==5,∵四边形ABCD是菱形,∴AB=BC=AD=5,∴点C(5,4),D(2,0),当x=5时,y=×52﹣×5+4=﹣+4=4,当x=2时,y=×22﹣×2+4=﹣+4=0,∴点C、D在该抛物线上;(3)证明:若点P(m,m2﹣5)在抛物线上,则有m2﹣m+4=m2﹣5,整理,得m2﹣10m+27=0,∵△=102﹣4×27=﹣8<0,∴方程无实数根,∴对任意实数m,点P(m,m2﹣5)都不在这个二次函数的图象上.