临夏州广河二中2014—2015学年度第一学期期中考试九年级数学试卷满分120分,考试时间120分钟。一、精心选一选(每小题3分,共30分,将答案填在相应的括号内)1.下列方程中不一定是一元二次方程的是()A.(a-3)x2=8(a≠3)B.ax2+bx+c=0C.(x+3)(x-2)=x+5D.2332057xx2.关于x的一元二次方程22110axxa的一个根是0,则a值为()A.B.1C.或1D.123.在抛物线y=-x2+1上的一个点是()A.(1,0)B.(0,0)C.(0,-1)D.(1,1)4.抛物线y=x2-2x+1的顶点坐标是()A.(1,0)B.(-1,0)C.(-2,1)D.(2,-1)5.已知方程22xx,则下列说中,正确的是()A.方程两根和是1B.方程两根积是2C.方程两根和是1D.方程两根积比两根和大26.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10007.若点(2,5),(4,5)在抛物线y=ax2+bx+c上,则它的对称轴是()A.abxB.x=1C.x=2D.x=38.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为()A.x(5+x)=6B.x(5-x)=6C.x(10-x)=6D.x(10-2x)=69.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=-5(t-1)2+6,则小球距离地面的最大高度是()A.1米B.5米C.6米D.7米10.二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点()A.(-1,-1)B.(1,-1)C.(-1,1)D.(1,1)二、细心填一填(每小题4分,共32分)11.方程x2+x=0的根是.12.请你写出以2和-2为根的一元二次方程.(只写一个即可)13.抛物线y=-x2+3的对称轴是,顶点坐标是.14.函数y=x2+x-2的图象与y轴的交点坐标是.15.已知x=-1是方程x2+bx-5=0的一个根,则b=________,方程的另一根为________.16.若x1、x2是方程x2+4x-6=0的两根,则x12+x22=.17.抛物线22yxxm,若其顶点在x轴上,则m=_________.18.若二次函数y=-x2+2x+k的部分图象如图所示,则关于x的一元二次方程-x2+2x+k=0的一个解x1=3,另一个解x2=___.b1三、解答题(要求:写出必要的解题步骤和说理过程).19.(满分9分)请画出二次函数2-2-3yxx的图象,并结合所画图象回答问题:(1)当x取何值时,y=0;(2)当x取何值时,y<0.20.(满分6分)现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b.如:3★5=32﹣3×3+5,若x★2=6,试求实数x的值.21.(满分8分)已知△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程2223320xkxkk的两个实数根.(1)求证:无论k为何值时,方程总有两个不相等的实数根.(2)当k为何值时,△ABC是以BC为斜边的直角三角形.22.(满分9分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,请结合图象,判断下列各式的符号.①abc;②b2-4ac.;③a+b+c;④a﹣b+c.23.(满分6分)已知二次函数y=ax2+bx+c的图象如图所示.①求这个二次函数的表达式;②当x为何值时,y=3.24.(满分7分)如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m2,道路应为多宽?25.(满分13分)在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移1个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)若顶点为M的抛物线与x轴的两个交点为B、C,试求线段BC的长.2014—2015学年度第一学期期中考试九年级数学参考答案及评分标准一、选择题(每小题3分,共30分)1-5小题BBAAC6-10小题DDBCD二、填空题(每小题4分,共32分)11.0或-112.答案不唯一,如x2-4=0等.13.直线x=0(或y轴)(0,3)14.(0,-2)15.-4,516.2817.-118.119.用描点法正确画出函数图象得3分;(1)因为抛物线与x轴交于(-1,0)、(3,0),所以当x=-1或3时,y=0;…………(3分)(2)由图象知,当-1<x<3时,y<0;…………(6分)20.x2-3x+2=6…………(4分)解得:x=﹣1或4…………(6分)21.(1)证明:∵△=22(23)4(32)10kkk∴无论k为何值方程总有两个不相等的实数根。…………(3分)w(2)由已知222ACABBC即:22()2ABACABACBC∵AB+AC=2k+32ABAC=32kk代入得222232(32)5kkk21231002,5kkkk…………(7分)又∵AB+AC=2k+3>0∴k2=﹣5舍去∴k=2…………(8分)学生的其它解法,只要正确,可以参考给分.22.解:①abc<0;②b2-4ac<0.③a+b+c<0;④a﹣b+c<0.(①3分,②③④每小题2分,共9分.若直接写出答案酌情扣分.)23.①y=x2-2x(3分)②3或-1(3分)24.解:设道路宽为xm,根据题意,得:(32-2x)(20-x)=570………………4分640-32x-40x+2x2=570x2-36x+35=0(x-1)(x-35)=0x1=1x2=35(舍去)………………6分答:道路应宽1m………………7分25.正确求出函数解析式y=(x﹣1)2﹣3,得4分M、A、B坐标,每个坐标得2分解:(1)抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3,顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,点B(3,1);(2)BC=23(3分)