德州市武城二中2017届九年级上期中数学试卷含答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2016-2017学年山东省德州市武城二中九年级(上)期中数学试卷一、选择题(共12道小题,每道小题3分,共36分.)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.2.关于x的一元二次方程(a﹣2)x2+x+a2﹣4=0的一个根是0,则a的值为()A.2B.﹣2C.2或﹣2D.03.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A.15°B.28°C.29°D.34°4.下列命题中正确的有()个(1)平分弦的直径垂直于弦(2)经过半径一端且与这条半径垂直的直线是圆的切线(3)在同圆或等圆中,圆周角等于圆心角的一半(4)平面内三点确定一个圆(5)三角形的外心到三角形的各个顶点的距离相等.A.1B.2C.3D.45.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30°B.60°C.90°D.150°6.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10007.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=()A.35°B.70°C.110°D.140°8.AB是⊙O的弦,∠AOB=80°,则弦AB所对的圆周角是()A.40°B.140°或40°C.20°D.20°或160°9.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.﹣20mB.10mC.20mD.﹣10m10.若A(﹣,y1),B(﹣1,y2),C(,y3)为二次函数y=﹣x2﹣4x+5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y311.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.cmB.cmC.cm或cmD.cm或cm12.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题(共8道小题,每道小题3分,共24分.)13.如果关于x的方程ax2+x﹣1=0有实数根,则a的取值范围是.14.如图,点A是直线l上一点,AB切⊙O于点B,圆心O与点A间的最小距离是6cm,⊙O的半径为4cm,则AB的最小值是.15.如图,已知平行四边形ABCD的两条对角线交于平面直角坐标系的原点,点A的坐标为(﹣2,3),则点C的坐标为.16.若等边三角形的边长为3cm,则其外接圆的半径为.17.抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c=.18.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为.19.抛物线y=x2﹣ax+1的顶点在x轴的正半轴上,则a=.20.已知,如图:AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.给出以下四个结论:①∠EBC=22.5°;②BD=DC;③劣弧是劣弧的2倍;④AE=BC.其中正确结论的序号是.三、解答题(共60分)21.解方程:(1)3x(x﹣1)=2x﹣2(2)(x+8)(x+1)=﹣1.22.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由.23.如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.24.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?25.如图,已知AB是圆O的直径,AB=10,弦CD与AB相交于点E,∠AEC=30°,OE:AE=2:3,求弦CD的长.26.如图所示,抛物线y=ax2+bx+c的顶点为M(﹣2,﹣4),与x轴交于A、B两点,且A(﹣6,0),与y轴交于点C.(1)求抛物线的函数解析式;(2)求△ABC的面积;(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.2016-2017学年山东省德州市武城二中九年级(上)期中数学试卷参考答案与试题解析一、选择题(共12道小题,每道小题3分,共36分.)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解即可.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、不是中心对称图形,本选项错误;D、是中心对称图形,本选项正确.故选D.2.关于x的一元二次方程(a﹣2)x2+x+a2﹣4=0的一个根是0,则a的值为()A.2B.﹣2C.2或﹣2D.0【考点】一元二次方程的解.【分析】由一元二次方程的定义,可知a﹣2≠0;一根是0,代入(a﹣2)x2+x+a2﹣4=0可得a2﹣4=0.a的值可求.【解答】解:∵(a﹣2)x2+x+a2﹣4=0是关于x的一元二次方程,∴a﹣2≠0,即a≠2①由一个根是0,代入(a﹣2)x2+x+a2﹣4=0,可得a2﹣4=0,解之得a=±2;②由①②得a=﹣2.故选B.3.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A.15°B.28°C.29°D.34°【考点】圆周角定理.【分析】根据圆周角定理可知:圆周角的度数等于它所对的弧的度数的一半,从而可求得∠ACB的度数.【解答】解:根据圆周角定理可知:圆周角的度数等于它所对的弧的度数的一半,根据量角器的读数方法可得:(86°﹣30°)÷2=28°.故选:B.4.下列命题中正确的有()个(1)平分弦的直径垂直于弦(2)经过半径一端且与这条半径垂直的直线是圆的切线(3)在同圆或等圆中,圆周角等于圆心角的一半(4)平面内三点确定一个圆(5)三角形的外心到三角形的各个顶点的距离相等.A.1B.2C.3D.4【考点】命题与定理.【分析】根据题目中的说法可以判断其是否正确,从而可以解答本题.【解答】解:平分弦(不是直径)的直径垂直于弦,故(1)错误;经过半径在圆上的一端且与这条半径垂直的直线是圆的切线,故(2)错误;在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,故(3)错误;平面内不在同一条直线上的三个点确定一个圆,故(4)错误;三角形的外心到三角形的各个顶点的距离相等,故(5)正确;故选A.5.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30°B.60°C.90°D.150°【考点】旋转的性质.【分析】根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.【解答】解:∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故选:B.6.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000【考点】由实际问题抽象出一元二次方程.【分析】先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=1000万元,把相关数值代入即可.【解答】解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选:D.7.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=()A.35°B.70°C.110°D.140°【考点】圆内接四边形的性质;圆周角定理.【分析】由圆内接四边形的外角等于它的内对角知,∠A=∠DCE=70°,由圆周角定理知,∠BOD=2∠A=140°.【解答】解:∵四边形ABCD内接于⊙O,∴∠A=∠DCE=70°,∴∠BOD=2∠A=140°.故选D.8.AB是⊙O的弦,∠AOB=80°,则弦AB所对的圆周角是()A.40°B.140°或40°C.20°D.20°或160°【考点】圆周角定理;圆内接四边形的性质.【分析】此题要分两种情况:当圆周角的顶点在优弧上时;当圆周角的顶点在劣弧上时;通过分析,从而得到答案.【解答】解:当圆周角的顶点在优弧上时,根据圆周角定理,得圆周角:∠ACB=∠AOB=×80°=40°;当圆周角的顶点在劣弧上时,根据圆内接四边形的性质,得此圆周角:∠ADB=180°﹣∠ACB=180°﹣40°=140°;所以弦AB所对的圆周角是40°或140°.故选B.9.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.﹣20mB.10mC.20mD.﹣10m【考点】二次函数的应用.【分析】根据题意,把y=﹣4直接代入解析式即可解答.【解答】解:根据题意B的纵坐标为﹣4,把y=﹣4代入y=﹣x2,得x=±10,∴A(﹣10,﹣4),B(10,﹣4),∴AB=20m.即水面宽度AB为20m.故选C.10.若A(﹣,y1),B(﹣1,y2),C(,y3)为二次函数y=﹣x2﹣4x+5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3【考点】二次函数图象上点的坐标特征.【分析】先求出二次函数y=﹣x2﹣4x+5的图象的对称轴,然后判断出A(﹣,y1),B(﹣1,y2),C(,y3)在抛物线上的位置,再求解.【解答】解:∵二次函数y=﹣x2﹣4x+5中a=﹣1<0∴抛物线开口向下,对称轴为x=﹣=﹣=﹣2∵B(﹣1,y2),C(,y3)中横坐标均大于﹣2∴它们在对称轴的右侧y3<y2,A(﹣,y1)中横坐标小于﹣2,∵它在对称轴的左侧,它关于x=﹣2的对称点为2×(﹣2)﹣(﹣)=﹣,>﹣>﹣1∵a<0时,抛物线开口向下,在对称轴的右侧y随x的增大而减小∴y3<y1<y2.故选C

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功