2016-2017学年辽宁省营口市大石桥市九年级(上)期中数学试卷一.选择题(本题共10题,每小题3分,共30分)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.2.一元二次方程x2﹣4x=12的根是()A.x1=2,x2=﹣6B.x1=﹣2,x2=6C.x1=﹣2,x2=﹣6D.x1=2,x2=63.下列一元二次方程中有两个相等实数根的是()A.2x2﹣6x+1=0B.3x2﹣x﹣5=0C.x2+x=0D.x2﹣4x+4=04.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4D.10+10(1+x)+10(1+x)2=36.45.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4D.y=2(x﹣3)2+46.将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4B.6C.8D.107.已知y=ax+b的图象如图所示,则y=ax2+bx的图象有可能是()A.B.C.D.8.如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系式为h=30t﹣5t2,那么小球从抛出至回落到地面所需的时间是()A.6sB.4sC.3sD.2s9.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3D.y的最小值是﹣410.如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0.你认为其中错误的有()A.2个B.3个C.4个D.1个二.填空题(本题共8题,每题3分,共24分)11.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为.12.设m,n分别为一元二次方程x2﹣2x﹣2015=0的两个实数根,则m2﹣3m﹣n=.13.用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm2.14.将抛物线y=2x2﹣12x+16绕它的顶点旋转180°,所得抛物线的解析式是.15.抛物线y=ax2+b+c的部分图象如图所示,则当y<0时,x的取值范围是.16.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.17.如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是.18.如图,在平面直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①②③④…,则三角形⑫的直角顶点的坐标为.三.解答题:(本题共96分)19.(20分)(1)用适当的方法解方程:①(x﹣2)2=2x﹣4②x2﹣2x﹣8=0.(2)先化简,再求值:÷(﹣a+1),其中a是方程x2﹣x=6的根.20.(10分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.21.(10分)已知二次函数的图象经过点(0,﹣3),顶点坐标为(﹣1,﹣4),(1)求这个二次函数的解析式;(2)求图象与x轴交点A、B两点的坐标;(3)图象与y轴交点为点C,求三角形ABC的面积.22.(10分)如图,要设计一副宽20cm、长30cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使彩条所占面积是图案面积的,应如何设计彩条的宽度?23.(10分)如图,一位篮球运动员跳起投篮,球沿抛物线y=﹣x2+3.5运行,然后准确落入篮框内.已知篮框的中心离地面的距离为3.05米.(1)球在空中运行的最大高度为多少米?(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?24.(12分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?25.(12分)如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分別在线段BC、CD上,∠EAF=30°,连接EF.(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),那么①∠E′AF度数②线段BE、EF、FD之间的数量关系(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.26.(12分)如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求A、B的坐标;(2)求直线BC的解析式;(3)当线段DE的长度最大时,求点D的坐标.2016-2017学年辽宁省营口市大石桥市九年级(上)期中数学试卷参考答案与试题解析一.选择题(本题共10题,每小题3分,共30分)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的概念求解,由于圆既是轴对称又是中心对称图形,故只考虑圆内图形的对称性即可.【解答】解:A、既是轴对称图形,不是中心对称图形;B、既是轴对称图形,又是中心对称图形;C、不是轴对称图形,是中心对称图形;D、只是轴对称图形,不是中心对称图形.故选B.【点评】此题主要是分析圆内的图案的对称性,只要有偶数条对称轴的轴对称图形一定也是中心对称图形.2.一元二次方程x2﹣4x=12的根是()A.x1=2,x2=﹣6B.x1=﹣2,x2=6C.x1=﹣2,x2=﹣6D.x1=2,x2=6【考点】解一元二次方程-因式分解法.【专题】计算题;一次方程(组)及应用.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:x2﹣4x﹣12=0,分解因式得:(x+2)(x﹣6)=0,解得:x1=﹣2,x2=6,故选B【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.3.下列一元二次方程中有两个相等实数根的是()A.2x2﹣6x+1=0B.3x2﹣x﹣5=0C.x2+x=0D.x2﹣4x+4=0【考点】根的判别式.【分析】由根的判别式为△=b2﹣4ac,挨个计算四个选项中的△值,由此即可得出结论.【解答】解:A、∵△=b2﹣4ac=(﹣6)2﹣4×2×1=28>0,∴该方程有两个不相等的实数根;B、∵△=b2﹣4ac=(﹣1)2﹣4×3×(﹣5)=61>0,∴该方程有两个不相等的实数根;C、∵△=b2﹣4ac=12﹣4×1×0=1>0,∴该方程有两个不相等的实数根;D、∵△=b2﹣4ac=(﹣4)2﹣4×1×4=0,∴该方程有两个相等的实数根.故选D.【点评】本题考查了根的判别式,解题的关键是根据根的判别式的正负判定实数根的个数.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式的正负,得出方程解得情况是关键.4.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4D.10+10(1+x)+10(1+x)2=36.4【考点】由实际问题抽象出一元二次方程.【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=34.6,把相关数值代入计算即可.【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.【点评】主要考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.5.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4D.y=2(x﹣3)2+4【考点】二次函数图象与几何变换.【专题】计算题.【分析】抛物线y=2x2的顶点坐标为(0,0),则把它向左平移3个单位,再向上平移4个单位,所得抛物线的顶点坐标为(﹣3,4),然后根据顶点式写出解析式.【解答】解:把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数解析式为y=2(x+3)2+4.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6.(2016•牡丹江)将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4B.6C.8D.10【考点】抛物线与x轴的交点;二次函数图象与几何变换.【专题】函数及其图象.【分析】抛物线y=x2﹣1向下平移8个单位长度后的到的新的二次函数的解析式为y=x2﹣9,令x2﹣9=0求其解即可知道抛物线与x轴的交点的横坐标,两点之间的距离随即可求.【解答】解:将抛物线y=x2﹣1向下平移8个单位长度,其解析式变换为:y=x2﹣9而抛物线y=x2﹣9与x轴的交点的纵坐标为0,所以有:x2﹣9=0解得:x1=﹣3,x2=3,则抛物线y=x2﹣9与x轴的交点为(﹣3,0)、(3,0),所以,抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为6【点评】本题考查了抛物线与x轴的交点、二次函数图象与几何变换,解题的关键是掌握抛物线沿着y轴向下平移时解析式的变换规律,难点是二次函数与x轴的交点与对应一元二次方程的解之间的关系7.已知y=ax+b的图象如图所示,则y=ax2+bx的图象有可能是()A.B.C.D.【考点】二次函数图象与系数的关系;一次函数图象与系数的关系.【专题】压轴题;数形结合.【分析】根据一次函数的性质得到a>0,b<0,再根据二次函数的性质得到抛物线开口向上,抛物线的对称轴在y轴的右侧,抛物线过原点,由此可得到正确答案.【解答】解:∵y=ax+b的图象过第一、三、四象限,∴a>0,b<0,对于y=ax2+bx的图象,∵a>0,∴抛物线开口向上,∵x=﹣>0,∴抛物线的对称轴在y轴的右侧,∵c=0,∴抛物线过原点.故选D.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴