山东东营实验学校2015年上学期九年级数学上册《一元二次方程》单元检测数学试题第Ⅰ卷(选择题共60分)一、选择题:本大题共15小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.1.(2014•广东,第8题3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.2.(2014年天津市,第10题3分)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28B.x(x﹣1)=28C.x(x+1)=28D.x(x﹣1)=283.(2014年云南省,第5题3分)一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2B.x1=1,x2=﹣2C.x1=﹣1,x2=﹣2D.x1=﹣1,x2=24.(2014•四川自贡,第5题4分)一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5.(2014·云南昆明,第6题3分)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.100)1(1442xB.144)1(1002xC.100)1(1442xD.144)1(1002x6.(2014•益阳,第5题,4分)一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1B.m=1C.m<1D.m≤17.(2014•菏泽,第6题3分)已知关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,则a﹣b的值为()8.(2014年山东泰安,第13题3分)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15D.(x+1)(4﹣0.5x)=159.(2013白银,8,3分)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36B.48(1+x)2=36C.36(1﹣x)2=48D.36(1+x)2=4810.(2013兰州,10,3分)据调查,2011年5月兰州市的房价均价为7600/m2,2013年同期将达到8200/m2,假设这两年兰州市房价的平均增长率为x,根据题意,所列方程为()A.7600(1+x%)2=8200B.7600(1﹣x%)2=8200C.7600(1+x)2=8200D.7600(1﹣x)2=820011.(2013·潍坊,10,3分)已知关于x的方程0112xkkx,下列说法正确的是()A.当0k时,方程无解B.当1k时,方程有一个实数解C.当1k时,方程有两个相等的实数解D.当0k时,方程总有两个不相等的实数解12.(2013贵州省黔西南州,7,4分)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x2)=196D.50+50(1+x)+50(1+2x)=196第Ⅱ卷(非选择题共60分)二、填空题:本大题共7小题,其中16-22题每小题5分,共35分.只要求填写最后结果.13.(2014•舟山,第11题4分)方程x2﹣3x=0的根为.14.(2013山东滨州,16,4分)一元二次方程2x2-3x+1=0的解为______________.15.(2013湖北荆门,16,3分)设x1,x2是方程x2-x-2013=0的两实数根,则x13+2014x2-2013=______.16.(2013四川绵阳,17,4分)已知整数k<5,若△ABC的边长均满足关于x的方程2380xkx,则△ABC的周长是10。17.(2014•济宁,第13题3分)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则=4.18.(2014•扬州,第17题,3分)已知a,b是方程x2﹣x﹣3=0的两个根,则代数式2a3+b2+3a2﹣11a﹣b+5的值为23.三、解答题:本大题共3小题,23、24题各8分,25题9分,共25分。解答要写出必要的文字说明、证明过程或演算步骤.19.(2014•广西玉林市、防城港市,第24题9分)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)20.((2014•新疆,第19题10分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?21..2014年广东汕尾,第22题9分)已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.参考答案:一、选择题:本大题共15小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.1.(2014•广东,第8题3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.考点:根的判别式.专题:计算题.分析:先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选B.新课标第一网点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2.(2014年天津市,第10题3分)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28B.x(x﹣1)=28C.x(x+1)=28D.x(x﹣1)=28考点:由实际问题抽象出一元二次方程.分析:关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.解答:解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选B.点评:本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.3.(2014年云南省,第5题3分)一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2B.x1=1,x2=﹣2C.x1=﹣1,x2=﹣2D.x1=﹣1,x2=2考点:解一元二次方程-因式分解法.分析:直接利用十字相乘法分解因式,进而得出方程的根解答:解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x1=﹣1,x2=2.故选:D.点评:此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.4.(2014•四川自贡,第5题4分)一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根考点:根的判别式.分析:把a=1,b=﹣4,c=5代入△=b2﹣4ac进行计算,根据计算结果判断方程根的情况.解答:解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.故选:D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.(2014·云南昆明,第6题3分)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.100)1(1442xB.144)1(1002xC.100)1(1442xD.144)1(1002x考点:由实际问题抽象出一元二次方程.分析:果园从2011年到2013年水果产量问题,是典型的二次增长问题.解答:解:设该果园水果产量的年平均增长率为x,由题意有xkb1.com144)1(1002x,故选D.点评:此题主要考查了由实际问题抽象出一元二次方程,理解二次增长是做本题的关键.6.(2014•益阳,第5题,4分)一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1B.m=1C.m<1D.m≤1考点:根的判别式.分析:根据根的判别式,令△≥0,建立关于m的不等式,解答即可.解答:解:∵方程x2﹣2x+m=0总有实数根,∴△≥0,即4﹣4m≥0,∴﹣4m≥﹣4,∴m≤1.故选D.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.(2014•菏泽,第6题3分)已知关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,则a﹣b的值为()A.1B.﹣1C.0D.﹣2考点:一元二次方程的解.分析:由于关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,那么代入方程中即可得到b2﹣ab+b=0,再将方程两边同时除以b即可求解.解答:解:∵关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,∴b2﹣ab+b=0,∵﹣b≠0,∴b≠0,方程两边同时除以b,得b﹣a+1=0,∴a﹣b=1.故选A.点评:此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程进而解决问题.8.(2014年山东泰安,第13题3分)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15D.(x+1)(4﹣0.5x)=15分析:根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4﹣0.5x)元,由题意得(x+3)(4﹣0.5x)=15即可.解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=15,故选A.点评:此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键.9.(2013白银,8,3分)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36B.48(1+x)2=36C.36(1﹣x)2=48D.36(1+x)2=48考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:三月份的营业额=一月份的营业额×(1+增长率)2,把相关数值代入即可.解答:解:二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2,即所列的方程为3