2015-2016学年山东省济宁市金乡县九年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.抛物线y=2x2﹣4的顶点坐标是()A.(1,﹣2)B.(0,﹣2)C.(1,﹣3)D.(0,﹣4)2.不在函数y=图象上的点是()A.(2,6)B.(﹣2,﹣6)C.(3,4)D.(﹣3,4)3.若抛物线y=x2﹣x﹣1与x轴的交点坐标为(m,0),则代数式m2﹣m+2012的值为()A.2012B.2013C.2014D.20154.如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.40°B.30°C.45°D.50°5.如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A.B.C.2D.36.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变7.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为()A.4πB.2πC.πD.8.已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2,其中正确结论的个数是()A.0B.1C.2D.39.如图,在平面直角坐标系中,⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P,Q两点,点P在点Q的右方,若点P的坐标是(﹣1,2),则点Q的坐标是()A.(﹣4,2)B.(﹣4.5,2)C.(﹣5,2)D.(﹣5.5,2)10.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A.B.C.D.二、填空题(本题共5小题,每小题3分,共15分)11.方程x2﹣2x=0的根是.12.设有反比例函数,(x1,y1)(x2,y2)为其图象上两点,若x1<0<x2,y1>y2,则k的取值范围是.13.如图,△ABC中,DE∥BC,AE:EB=2:3,则△AED的面积与四边形DEBC的面积之比为.14.如右图,四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则sin∠APB等于.15.如图,直线l是经过点(1,0)且与y轴平行的直线.Rt△ABC中直角边AC=4,BC=3.将BC边在直线l上滑动,使A,B在函数的图象上.那么k的值是.三、解答题(本题共小题,共55分)16.已知关于x的一元二次方程x2﹣mx﹣2=0(1)若x=﹣1是这个方程的一个根,求m的值和方程的另一根;(2)对于任意的实数m,判断方程的根的情况,并说明理由.17.如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为;(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.18.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.19.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)20.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若PA=2,cosB=,求⊙O半径的长.21.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)22.如图,直线y=﹣x+3与x轴,y轴分别相交于点B、点C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,点A在点B的左边,顶点为P,且线段AB的长为2.(1)求点A的坐标;(2)求该抛物线的函数表达式;(3)在抛物线的对称轴上是否存在点G,使|GC﹣GB|最大?若存在,求G点坐标;若不存在说明理由.(3)连结AC,请问在x轴上是否存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.2015-2016学年山东省济宁市金乡县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.抛物线y=2x2﹣4的顶点坐标是()A.(1,﹣2)B.(0,﹣2)C.(1,﹣3)D.(0,﹣4)【考点】二次函数的性质.【分析】形如y=ax2+k的顶点坐标为(0,k),据此可以直接求顶点坐标.【解答】解:抛物线y=x2﹣4的顶点坐标为(0,﹣4).故选D.【点评】本题考查了二次函数的性质.二次函数的顶点式方程y=a(x﹣k)2+h的顶点坐标是(k,h),对称轴方程是x=k.2.不在函数y=图象上的点是()A.(2,6)B.(﹣2,﹣6)C.(3,4)D.(﹣3,4)【考点】反比例函数图象上点的坐标特征.【分析】根据得k=xy=12,所以只要点的横坐标与纵坐标的积等于12,就在函数图象上.【解答】解:A、2×6=12,不符合题意;B、﹣2×(﹣6)=12,不符合题意;C、3×4=12,不符合题意;D、﹣3×4=﹣12≠12,符合题意;故选D.【点评】本题主要考查反比例函数图象上点的坐标特征.所有在反比例函数上的点的横纵坐标的积应等于比例系数.3.若抛物线y=x2﹣x﹣1与x轴的交点坐标为(m,0),则代数式m2﹣m+2012的值为()A.2012B.2013C.2014D.2015【考点】抛物线与x轴的交点.【专题】计算题.【分析】先根据抛物线与x轴的交点问题可判断m为方程x2﹣x﹣1=0的解,路一元二次方程解的定义得到m2﹣m=1,然后利用整体代入的方法计算代数式m2﹣m+2012的值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的交点坐标为(m,0),∴m为方程x2﹣x﹣1=0的解,∴m2﹣m﹣1=0,即m2﹣m=1,∴m2﹣m+2012=1+2012=2013.故选B.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.4.如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.40°B.30°C.45°D.50°【考点】圆周角定理.【分析】首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.【解答】解:△AOB中,OA=OB,∠ABO=50°,∴∠AOB=180°﹣2∠ABO=80°,∴∠ACB=∠AOB=40°,故选A.【点评】本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.5.如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A.B.C.2D.3【考点】相似三角形的判定与性质.【专题】探究型.【分析】先根据题意判断出△ABD∽△BDC,再根据相似三角形的对应边成比例即可得出CD的长.【解答】解:∵∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,∴△ABD∽△BDC,∴=,即=,解得CD=.故选B.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变【考点】简单组合体的三视图.【分析】分别得到将正方体①移走前后的三视图,依此即可作出判断.【解答】解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【点评】考查三视图中的知识,得到从几何体的正面,左面,上面看的平面图形中正方形的列数及每列正方形的个数是解决本题的关键.7.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为()A.4πB.2πC.πD.【考点】扇形面积的计算;勾股定理;垂径定理.【分析】根据垂径定理求得CE=ED=,然后由圆周角定理知∠COE=60°,然后通过解直角三角形求得线段OC、OE的长度,最后将相关线段的长度代入S阴影=S扇形OCB﹣S△COE+S△BED.【解答】解:如图,假设线段CD、AB交于点E,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=,又∵∠CDB=30°,∴∠COE=2∠CDB=60°,∠OCE=30°,∴OE=CE•cot60°=×=1,OC=2OE=2,∴S阴影=S扇形OCB﹣S△COE+S△BED=﹣OE×EC+BE•ED=﹣+=.故选D.【点评】本题考查了垂径定理、扇形面积的计算,通过解直角三角形得到相关线段的长度是解答本题的关键.8.已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2,其中正确结论的个数是()A.0B.1C.2D.3【考点】二次函数图象与系数的关系.【分析】根据抛物线与x轴的交点个数对①进行判断;由抛物线开口方向得a<0,由抛物线的对称轴在y轴的右侧得b>0,由抛物线与y轴的交点在x轴上方得c>0,则可对②进行判断;由ax2+bx+c﹣m=0没有实数根得到抛物线y=ax2+bx+c与直线y=m没有公共点,加上二次函数的最大值为2,则m>2,于是可对③进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②正确;∵ax2+bx+c﹣m=0没有实数根,即抛物线y=ax2+bx+c与直线y=m没有公共点,∵二次函数的最大值为2,∴m>2,所以③正确.故选D.【点评】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.常数项