重庆市永川区北山中学2015届九年级上学期第一次月考数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确答案,请将正确答案的代号填在答卷的对应位置.1.(4分)关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足()A.a≠1B.a≠﹣1C.a≠±1D.为任意实数2.(4分)一元二次方程x2=3x的根为()A.x=3B.x1=0,x2=3C.x=﹣3D.x1=﹣3,x2=03.(4分)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x﹣1)2=6C.(x+2)2=9D.(x﹣2)2=94.(4分)生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()A.x(x+1)=182B.x(x﹣1)=182C.x(x+1)=182×2D.x(x﹣1)=182×25.(4分)若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2010﹣a﹣b的值是()A.2012B.2013C.2014D.20156.(4分)下列抛物线的顶点坐标为(0,1)的是()A.y=x2+1B.y=x2﹣1C.y=(x+1)2D.y=(x﹣1)27.(4分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y28.(4分)当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.9.(4分)已知二次函数的图象经过(1,0)、(2,0)和(0,2)三点,则该函数的解析式是()A.y=2x2+x+2B.y=x2+3x+2C.y=x2﹣2x+3D.y=x2﹣3x+210.(4分)若二次函数的图象的顶点坐标为(2,﹣1),且抛物线过(0,3),则二次函数的解析式是()A.y=﹣(x﹣2)2﹣1B.y=﹣(x﹣2)2﹣1C.y=(x﹣2)2﹣1D.y=(x﹣2)2﹣111.(4分)二次函数y=2x2+3x﹣9的图象与x轴交点的横坐标是()A.和3B.和﹣3C.﹣和2D.﹣和﹣212.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b),(m≠1的实数)其中正确的结论的有()A.1个B.2个C.3个D.4个二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案填在答卷的对应位置.13.(4分)一元二次方程x2﹣3=0的根为.14.(4分)把一元二次方程(x﹣3)2=4化为一般形式为:.15.(4分)抛物线y=x2+的开口向,对称轴是.16.(4分)将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是.17.(4分)某城市为绿化环境,改善城市容貌,计划经过两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是.18.(4分)给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线,这个公共点叫做切点.有下列命题:①直线y=0是抛物线y=x2的切线;②直线x=﹣2与抛物线y=x2相切于点(﹣2,1);③若直线y=x+b与抛物线y=x2相切,则相切于点(2,1);④若直线y=kx﹣2与抛物线y=x2相切,则实数k=.其中正确命题的番号是.三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.(7分)解方程:(x﹣1)2﹣4(x﹣1)+4=0.20.(7分)已知二次函数y=﹣x2+4x﹣2.(1)把它化成顶点式为;(2)在给出的坐标系中画出函数的图象.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(10分)关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.22.(10分)如图,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个矩形的草坪ABCD.(1)围成的矩形草坪ABCD的面积为120平方米时.求该矩形草坪BC边的长.(2)围成的矩形草坪ABCD的面积可以是140平方米吗?为什么?23.(10分)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了个简易秋千,栓绳子的地方离地面都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子最低点距离地面的距离为多少米?24.(10分)某商品的进价为每件50元,售价为每件60元,每个月可卖出200件,如果每件商品的售价上涨1元,则每个月少买10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.(12分)已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.26.(12分)已知抛物线y=ax2+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标;(3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.重庆市永川区北山中学2015届九年级上学期第一次月考数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确答案,请将正确答案的代号填在答卷的对应位置.1.(4分)关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足()A.a≠1B.a≠﹣1C.a≠±1D.为任意实数考点:一元二次方程的定义.分析:本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.解答:解:由题意得:a2﹣1≠0,解得a≠±1.故选C.点评:本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2.(4分)一元二次方程x2=3x的根为()A.x=3B.x1=0,x2=3C.x=﹣3D.x1=﹣3,x2=0考点:解一元二次方程-因式分解法.分析:首先移项,再提取公因式x,可得x(x﹣3)=0,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0.”,即可求得方程的解.解答:解:移项得:x2﹣3x=0,∴x(x﹣3)=0∴x=0或x﹣3=0,∴x1=0,x2=3,故选:B.点评:此题主要考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法,此题是2015届中考2015届中考查的重点内容之一.3.(4分)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x﹣1)2=6C.(x+2)2=9D.(x﹣2)2=9考点:解一元二次方程-配方法.专题:计算题.分析:方程常数项移到右边,两边加上1变形即可得到结果.解答:解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.(4分)生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()A.x(x+1)=182B.x(x﹣1)=182C.x(x+1)=182×2D.x(x﹣1)=182×2考点:由实际问题抽象出一元二次方程.分析:先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.解答:解:设全组有x名同学,则每名同学所赠的标本为:(x﹣1)件,那么x名同学共赠:x(x﹣1)件,所以,x(x﹣1)=182.故选B.点评:本题考查一元二次方程的实际运用:要全面、系统地弄清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.5.(4分)若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2010﹣a﹣b的值是()A.2012B.2013C.2014D.2015考点:一元二次方程的解.分析:把x=1代入已知方程求得(a+b)的值,然后将其整体代入所求的代数式并求值即可.解答:解:∵关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,∴a+b+5=0,则a+b=﹣5,∴2010﹣a﹣b=2010﹣(a+b)=2010+5=2015.故选:D.点评:本题考查了一元二次方程的解定义.解题时,利用了“整体代入”的数学思想.6.(4分)下列抛物线的顶点坐标为(0,1)的是()A.y=x2+1B.y=x2﹣1C.y=(x+1)2D.y=(x﹣1)2考点:二次函数的性质.分析:先根据二次函数的性质确定各抛物线的顶点坐标,然后进行判断.解答:解:抛物线y=x2+1的顶点坐标为(0,1);抛物线y=x2﹣1的顶点坐标为(0,﹣1);抛物线y=(x+1)2的顶点坐标为(﹣1,0);抛物线y=(x﹣1)2的顶点坐标为(1,0).故选A.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值4ac﹣b24a,即顶点是抛物线的最低点.当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值4ac﹣b24a,即顶点是抛物线的最高点.7.(4分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2考点:二次函数图象上点的坐标特征.分析:根据二次函数的对称性,可利用对称性,找出点A的对称点A′,再利用二次函数的增减性可判断y值的大小.解答:解:∵函数的解析式是y=﹣(x+1)2+a,如右图,∴对称轴是x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选A.点评:本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.8.(4分)当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:根据题意,ab>0,即a、b同号,分