2015-2016学年河南省洛阳市地矿双语学校九年级(上)月考数学试卷(12月份)一、选择题(共8小题,每小题3分,满分24分)1.反比例函数y=的图象,当x>0时,y随x的增大而增大,则k的取值范围是()A.k<3B.k≤3C.k>3D.k≥32.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8B.3:8C.3:5D.2:53.如图,在△ABC中,点D,E分别在边AB,AC上,且==,则S△ADE:S四边形BCED的值为()A.1:B.1:3C.1:8D.1:94.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.5.已知P1(x1,y1),P2(x2,y2),P3(x3,y3)是反比例函数y=的图象上的三点,且x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y2<y1B.y1<y2<y3C.y2<y1<y3D.y2<y3<y16.在同一直角坐标系中,函数y=kx+k与y=(k≠0)的图象大致为()A.B.C.D.7.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=﹣的图象上,若点A的坐标为(﹣2,﹣2),则k的值为()A.4B.﹣4C.8D.﹣88.如图,(n+1)个边长为2的等边三角形有一条边在同一直线上,设阴影部分△B2D1C1的面积为S1,△B3D2C2面积S2,…,△Bn+1DnCn面积Sn,则S2015值为()A.B.C.D.二、填空题9.若反比例函数y=的图象经过点(1,﹣1),则k=.10.已知点A(m,n)是一次函数y=﹣x+3和反比例函数的一个交点,则代数式m2+n2的值为.11.从3,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数,作为函数y=中m的值,恰好使函数的图象经过第二、四象限的概率是.12.如图,在平行四边形ABCD中,AC、BD相交于点O,点E是AB的中点.若OE=3cm,则AD的长是cm.13.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.14.如图:点A在双曲线上,AB丄x轴于B,且△AOB的面积S△AOB=2,则k=.15.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为.三、解答题(共75分)16.已知函数y与x+1成反比例,且当x=﹣2时,y=﹣3.(1)求y与x的函数关系式;(2)当时,求y的值.17.已知正比例函数y=kx与反比例函数y=的图象都过A(m,1)点.求:(1)正比例函数的解析式;(2)正比例函数与反比例函数的另一个交点的坐标.18.在如图的方格中,△OAB的顶点坐标分别为O(0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),△O1A1B1与△OAB是关于点P为位似中心的位似图形.(1)在图中标出位似中心P的位置,并写出点的坐标及△O1A1B1与△OAB的相似比;(2)以原点O为位似中心,在y轴的左侧画出△OAB的一个位似△OA2B2,使它与△OAB的位似比为2:1,并写出点B的对应点B2的坐标;(3)在(2)条件下,若点M(a,b)是△OAB边上一点(不与顶点重合),写出M在△OA2B2中的对应点M2的坐标.19.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.(1)求证:DE是⊙O的切线;(2)求证:BD2=AB•CE.20.如图,光源L距地面(LN)8米,距正方体大箱顶站(LM)2米,已知,在光源照射下,箱子在左侧的影子BE长5米,求箱子在右侧的影子CF的长.(箱子边长为6米)21.如图,已知A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.22.阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在BC边上,CD:BD=1:2,AD与BE相交于点P,求的值.小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).请回答:的值为.参考小昊思考问题的方法,解决问题:如图3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3.(1)求的值;(2)若CD=2,则BP=.23.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.2015-2016学年河南省洛阳市地矿双语学校九年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.反比例函数y=的图象,当x>0时,y随x的增大而增大,则k的取值范围是()A.k<3B.k≤3C.k>3D.k≥3【考点】反比例函数的性质.【分析】根据反比例函数的性质解题.【解答】解:∵当x>0时,y随x的增大而增大,∴函数图象必在第四象限,∴k﹣3<0,∴k<3.故选A.【点评】对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.2.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8B.3:8C.3:5D.2:5【考点】平行线分线段成比例.【分析】先由AD:DB=3:5,求得BD:AB的比,再由DE∥BC,根据平行线分线段成比例定理,可得CE:AC=BD:AB,然后由EF∥AB,根据平行线分线段成比例定理,可得CF:CB=CE:AC,则可求得答案.【解答】解:∵AD:DB=3:5,∴BD:AB=5:8,∵DE∥BC,∴CE:AC=BD:AB=5:8,∵EF∥AB,∴CF:CB=CE:AC=5:8.故选A.【点评】此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.3.如图,在△ABC中,点D,E分别在边AB,AC上,且==,则S△ADE:S四边形BCED的值为()A.1:B.1:3C.1:8D.1:9【考点】相似三角形的判定与性质.【分析】易证△ADE∽△ABC,然后根据相似三角形面积的比等于相似比的平方,继而求得S△ADE:S四边形BCED的值.【解答】解:∵==,∠A=∠A,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:9,∴S△ADE:S四边形BCED=1:8,故选C.【点评】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.4.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.【考点】相似三角形的判定与性质.【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【解答】解:∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选C.【点评】本题主要考查的是相似三角形的判定与性质,发现+=1是解决本题的关键.5.已知P1(x1,y1),P2(x2,y2),P3(x3,y3)是反比例函数y=的图象上的三点,且x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y2<y1B.y1<y2<y3C.y2<y1<y3D.y2<y3<y1【考点】反比例函数图象上点的坐标特征.【专题】函数思想.【分析】先根据反比例函数y=的系数2>0判断出函数图象在一、三象限,在每个象限内,y随x的增大而减小,再根据x1<x2<0<x3,判断出y1、y2、y3的大小.【解答】解:∵k>0,函数图象如图,则图象在第一、三象限,在每个象限内,y随x的增大而减小,又∵x1<x2<0<x3,∴y2<y1<y3.故选C.【点评】本题考查了由反比例函数的图象和性质确定y2,y1,y3的关系.注意是在每个象限内,y随x的增大而减小.不能直接根据x的大小关系确定y的大小关系.6.在同一直角坐标系中,函数y=kx+k与y=(k≠0)的图象大致为()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【专题】压轴题.【分析】分别根据反比例函数及一次函数图象的特点对各选项进行逐一分析即可.【解答】解:A、由反比例函数的图象在一、三象限可知﹣k>0,k<0,由一次函数的图象过一、二、四象限可知k<0,且k>0,两结论相矛盾,故本选项错误;B、由反比例函数的图象在二、四象限可知﹣k<0,k>0,由一次函数的图象与y轴交点在y轴的正半轴且过一、二、三象限可知k>0,两结论一致,故本选项正确;C、由反比例函数的图象在一、三象限可知﹣k>0,k<0,由一次函数的图象与y轴交点在y轴的正半轴可知k>0,两结论矛盾,故本选项错误.D、由反比例函数的图象在二、四象限可知﹣k<0,k>0,由一次函数的图象过一、二、四象限可知k<0且k>,两结论相矛盾,故本选项错误;故选B.【点评】本题考查的是一次函数与反比例函数图象的特点,熟知一次函数与反比例函数的性质是解答此题的关键.7.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=﹣的图象上,若点A的坐标为(﹣2,﹣2),则k的值为()A.4B.﹣4C.8D.﹣8【考点】待定系数法求反比例函数解析式;矩形的性质;相似三角形的判定与性质.【专题】压轴题.【分析】要求反比例函数的解析式,只要求出点C的坐标即可.【解答】解:可以设点C的坐标是(m,n),设AB与x轴交于点M,则△BMO∽△BAD,则,因为AD=2+m,AB=2+n,OM=2,BM=n,因而得到,即mn=4,点(m,n)在反比例函数y=﹣的图象上,代入得到:n=,则k=﹣2mn=﹣8.故选:D.【点评】求函数的解析式可以先求出点的坐标代入就可以.本题的难点是借助矩形的性质,转化为相似的性质解决.8.如图,(n+1)个边长为2的等边三角形有一条边在同一直线上,设阴影部分△B2D1C1的面积为S1,△B3D2C2面积S2,…,△Bn+1DnCn面积Sn,则S2015值为()A.B.C.D.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】规律型.【分析】由n+1个边长为2的等边三角形有一条边在同一直线上,则B1,B2,B3,…Bn在一条直线上,可作出直线B1B2.易求得△AB1C1的面积,然后由相似三角形的性质,易求得S1的值,同理求得S2的值,继而求得Sn的值.【解答】解:∵n+1个边长为2的等边三角形有一条边在同一直线上,∴S△AB1C1==,连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1,∵