2014-2015学年新乡市九年级上期末数学试卷含答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2014-2015学年河南省新乡市九年级(上)期末数学试卷一、选择题:每小题3分,共24分。下列各小题均有四个答案,其中只有一个是正确的。1.一元二次方程x2+2x=0的根是()A.x1=0,x2=﹣2B.x1=1,x2=2C.x1=1,x2=﹣2D.x1=0,x2=22.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列事件中,属于必然事件的是()A.打开电视,它正在播广告B.掷两枚质地均匀的骰子,点数之和一定大于6C.某射击运动员射击一次,命中靶心D.早晨的太阳从东方升起4.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14B.(x﹣3)2=14C.(x+6)2=D.以上答案都不对5.如图,直线AB、AD分别与⊙O切于点B、D,C为⊙O上一点,且∠BCD=132°,则∠A的度数是()A.48°B.84°C.90°D.96°6.同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大7.某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100B.100(1﹣x)2=144C.144(1+x)2=100D.100(1+x)2=1448.已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a﹣b+c<0,则正确的结论是()A.①②③④B.②④⑤C.②③④D.①④⑤二、填空题:每小题3分,共21分。9.若a是方程x2﹣2x﹣5=0的根,则1﹣4a+2a2=.10.在平面直角坐标系中,将抛物线y=﹣x2+2先向右平移1个单位,再向下平移3个单位,得到的抛物线的解析式为.11.关于x的一元二次方程x2+x+k=0有两个实数根,则k的取值范围是.12.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是.13.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,则m的取值范围是.14.若一个圆锥的侧面展开图是半径为18cm,圆心角为210°的扇形,则这个圆锥的底面半径是cm.15.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶片状”阴影图案的面积为.三、解答题:本大题共8个小题,满分75分。16.用适当的方法解一元二次方程(x+4)2=5(x+4).17.已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A,点B和点C的坐标;(2)画出△ABC绕点A按逆时针方向旋转90°后的△AB′C′;(3)在(2)的条件下,求点C旋转到点C′所经过的路线长及线段AC旋转到新位置时所划过区域的面积.18.在一个不透明的袋子中装有(除颜色外)完全相同的红色小球1个,白色小球1个和黄色小球2个,(1)从中先摸出一个小球,记录下它的颜色后,将它放回袋中搅匀,再摸出一个小球,记录下颜色.求摸出的两个小球的颜色恰好是“一红一黄”的概率是多少?(2)如果摸出第一个小球之后不放回袋中,再摸出第二个小球,这时摸出的两个小球的颜色恰好是“一红一黄”的概率是多少?(3)小明想给袋中加入一些红色的小球,使从袋中任意摸出一个小球恰为红色的概率为,请你帮小明算一算,应该加入多少个红色的小球?19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).20.已知AB是⊙O的直径,PA是⊙O的切线,PB交⊙O于点C,过点O作OE∥PB,交⊙O于点D,交PA于点E.(1)求证:∠BDC=∠APB;(2)若PA=8,PB=10,求线段CD的长.21.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22.阅读下面材料:小辉遇到这样一个问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E在边BC上,∠DAE=45°.若BD=3,CE=1,求DE的长.小辉发现,将△ABD绕点A按逆时针方向旋转90°,得到△ACF,连接EF(如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE=45°,可证△FAE≌△DAE,得FE=DE.解△FCE,可求得FE(即DE)的长.请回答:在图2中,∠FCE的度数是,DE的长为.参考小辉思考问题的方法,解决问题:如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是边BC,CD上的点,且∠EAF=∠BAD.猜想线段BE,EF,FD之间的数量关系并说明理由.23.已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.2014-2015学年河南省新乡市九年级(上)期末数学试卷参考答案与试题解析一、选择题:每小题3分,共24分。下列各小题均有四个答案,其中只有一个是正确的。1.一元二次方程x2+2x=0的根是()A.x1=0,x2=﹣2B.x1=1,x2=2C.x1=1,x2=﹣2D.x1=0,x2=2【考点】解一元二次方程-因式分解法.【专题】计算题;一次方程(组)及应用.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:x(x+2)=0,解得:x1=0,x2=﹣2.故选A.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.下列事件中,属于必然事件的是()A.打开电视,它正在播广告B.掷两枚质地均匀的骰子,点数之和一定大于6C.某射击运动员射击一次,命中靶心D.早晨的太阳从东方升起【考点】随机事件.【分析】根据事件的分类判断,必然事件就是一定发生的事件,根据定义即可解决.【解答】解:A、打开电视,它正在播广告,是随机事件,故本选项错误;B、掷两枚质地均匀的骰子,点数之和一定大于6是不确定事件,故本选项错误;C、某射击运动员射击一次,命中靶心是随机事件,故本选项错误;D、早晨的太阳从东方升起是必然事件,故本选项正确;故选D.【点评】本题考查的是随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.4.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14B.(x﹣3)2=14C.(x+6)2=D.以上答案都不对【考点】解一元二次方程-配方法.【专题】配方法.【分析】把方程变形得到x2+6x=5,方程两边同时加上一次项的系数一半的平方,两边同时加上9即可.【解答】解:∵x2+6x﹣5=0∴x2+6x=5∴x2+6x+9=5+9∴(x+3)2=14.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.如图,直线AB、AD分别与⊙O切于点B、D,C为⊙O上一点,且∠BCD=132°,则∠A的度数是()A.48°B.84°C.90°D.96°【考点】切线的性质.【分析】过点B作直径BE,连接OD、DE.根据圆内接四边形性质可求∠E的度数;根据圆周角定理求∠BOD的度数;根据四边形内角和定理求解即可.【解答】解:过点B作直径BE,连接OD、DE.∵B、C、D、E共圆,∠BCD=140°,∴∠E=180°﹣132°=48°,∴∠BOD=96°,∵AB、AD与⊙O相切于点B、D,∴∠OBA=∠ODA=90°,∴∠A=360°﹣90°﹣90°﹣96°=84°.故选B.【点评】此题考查了切线的性质、圆内接四边形性质、圆周角定理、四边形内角和定理等知识点,难度中等.连接切点和圆心是解决有关切线问题时常作的辅助线.6.同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大【考点】列表法与树状图法.【专题】计算题.【分析】先画出树状图展示所有4种等可能的结果数,再找出两正面朝上的、两背面朝上的和一个正面朝上,另一个背面朝上的结果数,然后分别计算它们的概率,再比较大小即可.【解答】解:画树状图为:共有4种等可能的结果数,其中两正面朝上的占1种,两背面朝上的占1种,一个正面朝上,另一个背面朝上的占2种,所以两正面朝上的概率=;两反面朝上的概率=;一个正面朝上,另一个背面朝上的概率==.故选C.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.7.某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100B.100(1﹣x)2=144C.144(1+x)2=100D.100(1+x)2=144【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】2014年的产量=2012年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:设该果园水果产量的年平均增长率为x,则2013年的产量为100(1+x)吨,2014年的产量为100(1+x)(1+x)=100(1+x)2吨,根据题意,得100(1+x)2=144,故选:D.【点评】本题考查了由实际问题抽象出一元二次方程;得到2014年产量的等量关系是解决本题的关键.8.已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a﹣b+c<0,则正确的结论是()A.①②③④B.②④⑤C.②③④D.①④⑤【考点】二次函数图象与系数的关系.【专题】计算题;压轴题.【分析】根据抛物线

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功