云南省楚雄州双柏县2016届九年级上期末数学试卷含答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2015-2016学年云南省楚雄州双柏县九年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.一元二次方程x2﹣4=0的解是()A.x=2B.x=﹣2C.x1=2,x2=﹣2D.x1=,x2=﹣2.若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A.正方体B.圆锥C.圆柱D.球3.下列一元二次方程中,没有实数根的是()A.4x2﹣5x+2=0B.x2﹣6x+9=0C.5x2﹣4x﹣1=0D.3x2﹣4x+1=04.二次函数y=﹣(x﹣1)2+2的顶点坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)5.如图,在菱形ABCD中,对角线AC、BD相交于点O,下列结论:①AC⊥BD;②OA=OB;③∠ADB=∠CDB;④△ABC是等边三角形,其中一定成立的是()A.①②B.③④C.②③D.①③6.如图,直线y=﹣x+3与y轴交于点A,与反比例函数y=(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=3BO,则反比例函数的解析式为()A.y=B.y=﹣C.y=D.y=﹣7.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1B.2C.3D.48.已知,在Rt△ABC中,∠C=90°,AC=3,BC=4,则sinA的值为()A.B.C.D.二、填空题(本大题共7个小题,每小题3分,满分21分)9.函数y=的自变量x的取值范围是.10.已知≠0,则的值为.11.写出一个经过一、三象限的反比例函数(k≠0)的解析式.12.已知一元二次方程x2﹣4x+2=0的两个实数根为x1、x2,则:(x1﹒x2)(x1+x2)的值为.13.如果两个相似三角形的周长比是4:1,那么它们的面积比是.14.矩形的两条对角线的夹角为60°,对角线长为12,则较短的边长为.15.抛物线y=﹣x2向上平移2个单位后所得的抛物线表达式是.三、解答题(本大题共有10个小题,满分75分)16.计算:.17.如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.18.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)19.已知二次函数y=﹣x2+2x+3.(1)写出这个二次函数的开口方向、对称轴、顶点坐标和最大值;(2)求出这个抛物线与坐标轴的交点坐标.20.现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.21.如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数y=(k≠0)的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点.(1)求点A的坐标及一次函数解析式.(2)求点C的坐标及反比例函数的解析式.22.如图,长方形ABCD,AB=20m,BC=15m,四周外围环绕着宽度相等的小路,已知小路的面积为246m2,求小路的宽度.23.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.24.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B、C两点.已知A(1,0),C(0,3),且BC=5.(1)求B点坐标;(2)分别求直线BC和抛物线的解析式(关系式).25.如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.2015-2016学年云南省楚雄州双柏县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.一元二次方程x2﹣4=0的解是()A.x=2B.x=﹣2C.x1=2,x2=﹣2D.x1=,x2=﹣【考点】解一元二次方程-直接开平方法.【分析】观察发现方程的两边同时加4后,左边是一个完全平方式,即x2=4,即原题转化为求4的平方根.【解答】解:移项得:x2=4,∴x=±2,即x1=2,x2=﹣2.故选:C.【点评】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.2.若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A.正方体B.圆锥C.圆柱D.球【考点】由三视图判断几何体.【分析】找到从正面、左面和上面看得到的图形是正方形的几何体即可.【解答】解:∵主视图和左视图都是正方形,∴此几何体为柱体,∵俯视图是一个正方形,∴此几何体为正方体.故选A.【点评】此题考查三视图,关键是根据:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.下列一元二次方程中,没有实数根的是()A.4x2﹣5x+2=0B.x2﹣6x+9=0C.5x2﹣4x﹣1=0D.3x2﹣4x+1=0【考点】根的判别式.【分析】分别计算出每个方程的判别式即可判断.【解答】解:A、∵△=25﹣4×2×4=﹣7<0,∴方程没有实数根,故本选项正确;B、∵△=36﹣4×1×4=0,∴方程有两个相等的实数根,故本选项错误;C、∵△=16﹣4×5×(﹣1)=36>0,∴方程有两个相等的实数根,故本选项错误;D、∵△=16﹣4×1×3=4>0,∴方程有两个相等的实数根,故本选项错误;故选A.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.二次函数y=﹣(x﹣1)2+2的顶点坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)【考点】二次函数的性质.【分析】根据二次函数的顶点式解析式写出顶点坐标即可.【解答】解:二次函数y=﹣(x﹣1)2+2的顶点坐标是(1,2).故选B.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式求顶点坐标的方法是解题的关键.5.如图,在菱形ABCD中,对角线AC、BD相交于点O,下列结论:①AC⊥BD;②OA=OB;③∠ADB=∠CDB;④△ABC是等边三角形,其中一定成立的是()A.①②B.③④C.②③D.①③【考点】菱形的性质.【分析】根据菱形的性质即可直接作出判断.【解答】解:根据菱形的对角线互相垂直平分可得:①正确;②错误;根据菱形的对角线平分一组内角可得③正确.④错误.故选D.【点评】本题考查了菱形的性质,正确记忆性质的基本内容是关键.6.如图,直线y=﹣x+3与y轴交于点A,与反比例函数y=(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=3BO,则反比例函数的解析式为()A.y=B.y=﹣C.y=D.y=﹣【考点】反比例函数与一次函数的交点问题.【专题】压轴题.【分析】先求出点A的坐标,然后表示出AO、BO的长度,根据AO=3BO,求出点C的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式.【解答】解:∵直线y=﹣x+3与y轴交于点A,∴A(0,3),即OA=3,∵AO=3BO,∴OB=1,∴点C的横坐标为﹣1,∵点C在直线y=﹣x+3上,∴点C(﹣1,4),∴反比例函数的解析式为:y=﹣.故选:B.【点评】本题考查的是反比例函数与一次函数的交点问题,根据题意确定点C的横坐标并求出纵坐标是解题的关键.7.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1B.2C.3D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.8.已知,在Rt△ABC中,∠C=90°,AC=3,BC=4,则sinA的值为()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【分析】根据勾股定理,可得AB的长,根据角的正弦,等于角的对边比斜边,可得答案.【解答】解:由勾股定理得AB==5,sinA=,故选:D.【点评】本题考查了锐角三角函数的定义,先求出斜边,再求出正弦值.二、填空题(本大题共7个小题,每小题3分,满分21分)9.函数y=的自变量x的取值范围是x≥7.【考点】函数自变量的取值范围.【分析】函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【解答】解:根据题意得:x﹣7≥0,解得x≥7,故答案为x≥7.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.10.已知≠0,则的值为.【考点】比例的性质.【分析】根据比例的性质,可用a表示b、c,根据分式的性质,可得答案.【解答】解:由比例的性质,得c=a,b=a.===.故答案为:.【点评】本题考查了比例的性质,利用比例的性质得出a表示b、c是解题关键,又利用了分式的性质.11.写出一个经过一、三象限的反比例函数(k≠0)的解析式y=.【考点】反比例函数的性质.【专题】开放型.【分析】反比例函数(k是常数,k≠0)的图象在第一,三象限,则k>0,符合上述条件的k的一个值可以是2.(正数即可,答案不唯一)【解答】解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:2.故答案为:y=等.【点评】此题主要考查了反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.12.已知一元二次方程x2﹣4x+2=0的两个实数根为x1、x2,则:(x1﹒x2)(x1+x2)的值为8.【考点】根与系数的关系.【分析】直接根据根与系数的关系求解.【解答】解:∵一元二次方程x2﹣4x+2=0的两个实数根为x1、x2,∴x1﹒x2=2,x1+x2=4,∴:(x1﹒x2)(x1+x2)=8,故答案为:8.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.13.如果两个相似三角形的周长比是4:1,那么它们的面积比是16:1.【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【解答】解:∵两个相似三角形的周长比是4:1,∴两个相似三角形的相似比是4:5,∴它们的面积为16:1.故答案为:16:1.【点评】此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.14.矩形的两条对角线的夹角为60°,对角线长为12,则较短的边长为6.【考点】

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功