云南红河州2015-2016学年度第一学期期末九年级数学试卷无答案一、选择题1.下列方程中,一元二次方程共有().①②③④⑤A.2个B.3个C.4个D.5个2.若关于x的方程mx2﹣4x+2=0有实数根,则m的取值范围是()A.m≤2B.m≠0C.m≤2且m≠0D.m<23.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则排水管内水的最大深度是()A.4B.5C.36D.64.一个半径为2cm的圆内接正六边形的面积等于()A.24cm2B.63cm2C.123cm2D.83cm25.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°6.函数mxxy822的图象上有两点),(11yxA,),(22yxB,若221xx,则()A.21yyB.21yyC.21yyD.1y、2y的大小不确定7.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C.D.8.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是m.(结果不取近似值)A.3B.3根号3C.D.4二、填空题9.一元二次方程x2=3x的根10.将抛物线y=3x2﹣2向左平移2个单位,再向下平移3个单位,则所得抛物线的解析式为.11.设x1,x2是方程x2﹣3x-2=0的两个根,则代数式x12+x22的值为__________.12.点P(-2,3)将点P绕点O逆时针旋转90°,则P、的坐标为13.若函数221ymxx的图象与x轴只有一个公共点,则常数m的值是_______14.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为15.抛物线y=-x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是2320xx22340xxy214xx21x2303xx第5题图第3题图三、解答题17.(1)解方程:(2x-3)2=9(2)化简:3201112()(3.14)8218.已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.19.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2014年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?20.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).(4)求出(2)△A2BC2的面积是多少;21.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为1/2。(1)试求袋中蓝球的个数第14题图第16题图(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率。22.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y箱与销售价x元/箱之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.△ABC的内切圆⊙o与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长?24.如图,对称轴为直线x=-1的抛物线y=a(x-h)2-4(a≠0)与x轴相交于A、B两点,与y轴交于点C.其中点A的坐标为(-3,0).(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.