山东省枣庄市滕州市2016届九年级上期末数学试卷含答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

山东省枣庄市滕州市2016届九年级上学期期末数学试卷一、选择题(每题3分,共45分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项填涂在答题卡上)1.下列四个点,在反比例函数y=图象上的是()A.(2,﹣6)B.(8,4)C.(3,﹣4)D.(﹣6,﹣2)2.下面方程中,有两个不等实数根的方程是()A.x2+x﹣1=0B.x2﹣x+1=0C.x2﹣x+=0D.x2+1=03.如果两个相似多边形的相似比为1:5,则它们的面积比为()A.1:25B.1:5C.1:2.5D.1:4.下列命题中正确的是()A.两条对角线相等的平行四边形是矩形B.三个角是直角的多边形是矩形C.两条对角线相等的四边形是矩形D.有一个角是直角的四边形是矩形5.在反比例函数的图象上有两点(﹣1,y1),,则y1﹣y2的值是()A.负数B.非正数C.正数D.不能确定6.在Rt△ABC中,∠C=90°,∠B=60°,那么sinA+cosB的值为()A.1B.C.D.7.高4米的旗杆在水平地面上的影长5米,此时测得附近一个建筑物的影子长20米,则该建筑物的高是()A.16米B.20米C.24米D.30米8.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234B.4312C.3421D.42319.如图是由5个大小相同的正方体组成的几何体,它的左视图为()A.B.C.D.10.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+4B.y=(x﹣4)2+4C.y=(x+2)2+6D.y=(x﹣4)2+611.某校幵展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是()A.B.C.D.12.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对13.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣2,1)或(2,﹣1)D.(﹣8,4)或(8,﹣4)14.在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A.B.C.D.15.如图,二次函数y=ax2+bx+c的图象的对称轴是直线x=1,则下列结论:①a<0,b<0;②a+b+c>0;③a﹣b+c<0;④当x>1时,y随x的增大而减小;⑤b2﹣4ac>0;⑥4a+2b+c>0;⑦a+b>m(am+b)(m≠1).其中正确的结论有()A.4个B.5个C.6个D.7个二、填空题(本题共8小题,满分24分)16.二次函数y=x2+2x的顶点坐标为.17.一个四边形各边的中点的连线组成的四边形为菱形,则原四边形的特点是.18.关于x的一元二次方程kx2﹣x+2=0有两个实数根,则k的取值范围是.19.二次函数y=x2+bx﹣2(b为常数)的图象与x轴有个交点.20.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为cm(参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器).21.将矩形纸片ABCD,按如图所示的方式折叠,点A、点C恰好落在对角线BD上,得到菱形BEDF.若BC=6,则AB的长为.22.如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC的长度是cm.23.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.三、解答题(共7小题,满分51分,解答应写出文字说明、证明过程或演算步骤,请在答题纸上作答)24.计算:20160﹣3tan30°+(﹣)﹣2﹣|﹣2|25.某超市计划在“十周年”庆典开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为8时,返现金15元;当两次所得数字之和为6时返现金10元和小于6时不返现金.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?26.如图,放置在水平桌面上的台灯的灯臂AB长为30cm,灯罩BC长为20cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:≈1.732)27.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润元.(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,当x取何值时,商场获利润最大?28.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.29.如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.30.如图,对称轴为x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.山东省枣庄市滕州市2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题(每题3分,共45分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项填涂在答题卡上)1.下列四个点,在反比例函数y=图象上的是()A.(2,﹣6)B.(8,4)C.(3,﹣4)D.(﹣6,﹣2)【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】分别计算出自变量为2、8、3、﹣6时的函数值,然后根据反比例函数图象上点的坐标特征可判断四个点是否在反比例函数y=图象上.【解答】解:当x=2时,y==6;当x=8时,y==;当x=3时,y==4;当x=﹣6时,y==﹣2,所以点(2,﹣6),(8,4),(3,﹣4)不在反比例函数y=图象上,而点(﹣6,﹣2)在反比例函数y=图象上.故选D.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.2.下面方程中,有两个不等实数根的方程是()A.x2+x﹣1=0B.x2﹣x+1=0C.x2﹣x+=0D.x2+1=0【考点】根的判别式.【专题】转化思想.【分析】分别计算各选项的△,来判断根的情况,一元二次方程有两个不等实数根即判别式的值大于0.【解答】解:A、∵△=b2﹣4ac=1+4=5>0,∴方程有两个不相等的实数根.B、∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根.C、∵△=b2﹣4ac=1﹣1=0,∴方程有两个相等的实数根.D、移项后得,x2=﹣1∵任何数的平方一定是非负数.∴方程无实根.故错误.故选A.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.如果两个相似多边形的相似比为1:5,则它们的面积比为()A.1:25B.1:5C.1:2.5D.1:【考点】相似多边形的性质.【分析】根据相似多边形面积的比等于相似比的平方即可得出结论.【解答】解:∵两个相似多边形的相似比为1:5,∴它们的面积比=12:52=1:25.故选A.【点评】本题考查的是相似多边形的性质,熟知相似多边形面积的比等于相似比的平方是解答此题的关键.4.下列命题中正确的是()A.两条对角线相等的平行四边形是矩形B.三个角是直角的多边形是矩形C.两条对角线相等的四边形是矩形D.有一个角是直角的四边形是矩形【考点】命题与定理;矩形的判定.【分析】根据矩形的判定方法对四个命题分别进行判断.【解答】解:A、两条对角线相等的平行四边形是矩形,所以A选项为真命题;B、三个角是直角的四边形是矩形,所以B选项为假命题;C、两条对角线相互平分且相等的四边形是矩形,所以C选项假真命题;D、有三个角是直角的四边形是矩形,所以D选项为假命题.故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.在反比例函数的图象上有两点(﹣1,y1),,则y1﹣y2的值是()A.负数B.非正数C.正数D.不能确定【考点】反比例函数图象上点的坐标特征.【分析】反比例函数:当k<0时,该函数图象位于第二、四象限,且在每一象限内,y随x的增大而增大.【解答】解:∵反比例函数中的k<0,∴函数图象位于第二、四象限,且在每一象限内,y随x的增大而增大;又∵点(﹣1,y1)和均位于第二象限,﹣1<﹣,∴y1<y2,∴y1﹣y2<0,即y1﹣y2的值是负数,故选A.【点评】本题考查了反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.6.在Rt△ABC中,∠C=90°,∠B=60°,那么sinA+cosB的值为()A.1B.C.D.【考点】特殊角的三角函数值.【分析】先求出∠A的度数,然后将特殊角的三角函数值代入求解.【解答】解:∵∠C=90°,∠B=60°,∴∠A=180°﹣90°﹣60°=30°,则sinA+cosB=+=1.故选A.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.7.高4米的旗杆在水平地面上的影长5米,此时测得附近一个建筑物的影子长20米,则该建筑物的高是()A.16米B.20米C.24米D.30米【考点】相似三角形的应用.【分析】在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【解答】解:∵,即,∴设建筑物的高是x米.则=解得:x=16.故该建筑物的高为16米.故选A.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出该建筑物的高度,体现了方程的思想.8.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234B.4312C.3421D.4231【考点】平行投影.【分析】由于太阳早上从东方升起,则早上树的影子向西;傍晚太阳在西边落下,此时树的影子向东,于是可判断四个时刻的时间顺序.【解答】解:时间由早到晚的顺序为4312.故选B.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.9.如图是由5个大小相同的正方体组成的几何体,它的左视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】细心观察图中几何体中正方体摆放的位置

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功