高三文科数学参考答案BDBABDABCDCD13.1|13xx14.315.116.②④17、解:(1)由题意得0)2(2xx(3分)解集为|02xxx或(5分)(2)由题意得0)1)((axax(6分)当aa1时,即21a时,解集为|1xaxa(8分)当aa1时,即21a时,解集为|1xaxa(10分)当aa1时,即21a时,解集为(12分)18.19.(1)因为)()()(yfxfxyf,令1xy,所以(1)(1)(1),fff所以(1)0f(2)因为)]84(3[)84()3(xfxff,而(22)(2)(2)2,fff,所以(3)(48)2ffx等价于(1224)(4)fxf,即12244x,则有48012244xx,所以13x,又0x,即103x20.解:(I)当25x时,cos,||||acacab=cos1x=-cosx=-cos25=cos35∵,0,ac,∴,ac=35(II)()1fxab=-cos2x+sinxcosx+1=1sin22x+1cos22x=21sin(2)242x∵x∈9,28,∴24x∈3,24,故sin(24x)∈[-1,22]∴当24x=34,即x=2时,f(x)max=121.(Ⅰ)设等差数列na的首项为1a,公差为d,由于37a,5726aa.,所以1127,21026adad,解得13a,2d,由于111,2nnnnaaaandS,所以21,2nnanSnn(Ⅱ)因为21nan,所以2141nann,因此11114141nbnnnn,故123111111142231nnTbbbbnn11141n=41nn,所以数列nb的前n项和41nnTn22.解:(I)当.63)(,22xxfa时分单调递减区间为的单调递增区间为所以函数单调递减时当单调递增时或故当分得令4);2,2(,,2,2,)(.)(,0)(22;)(,0)(222,20)(xfxfxfxxfxfxxxxf(II)因.333)(,33)(22aaxxxgaxxf故分解得则成立的一切对满足要使分令8;310,03)1(063)1(,110)(5,33)3()()(222xxxhxxhaaahxxaahxg(III)因为0ln)6(,6)(xaxxaxxg所以),(ln16,ln16ln16)(102)(ln62222xxxxxxxxxhxxhxxxa令分恒成立对一切即分所以从而因此分有单调递增在故所以因为则14.22ln12)2()(.22ln12)2()(,0)(12.02ln25)2()(,,2)(,0)(,2,112)(minhxhahxhxhxxxxxxx