《高等数学》知识在物理学中的应用举例

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1《高等数学》知识在物理学中的应用举例一导数与微分的应用分析利用导数与微分的概念与运算,可解决求变化率的问题。求物体的运动速度、加速度的问题是典型的求变化率问题。在求解这类问题时,应结合问题的物理意义,明确是在对哪个变量求变化率。在此基础上,灵活运用各类导数和微分公式解决具体问题。例1如图,曲柄,rOA以均匀角速度饶定点O转动.此曲柄借连杆AB使滑块B沿直线Ox运动.求连杆上C点的轨道方程及速度.设,aCBAC,AOB.ABOy解1)如图,点C的坐标为:coscosarx,(1)A.sinay(2)C由三角形的正弦定理,有B,sin2sinarox故得.2sin2sinryra(3)由(1)得ryaxrax22coscos(4)由,1cossin)4()3(2222得,12422222222ryaxyaxry化简整理,得C点的轨道方程为:.)3()(422222222rayxyax2)要求C点的速度,首先对(1),(2)分别求导,得,sincos2cossinrrx,2cosry其中.2又因为,sin2sinar对该式两边分别求导,得.cos2cosar所以C点的速度22yxV4cos)sincos2cossin(2222rrr.)sin(cossin4coscos22r例2若一矿山升降机作加速度运动时,其加速度为),2sin1(Ttca式中c及T为常数,已知升降机的初速度为零,试求运动开始t秒后升降机的速度及其所走过的路程.解:由题设及加速度的微分形式dtdva,有,)2sin1(dtTtcdv对等式两边同时积分vtdtTtcdv00,)2sin1(得:,2cos2DTtTcctv其中D为常数.由初始条件:,0,0tv得,2cTD于是)].12(cos2[TtTtcv又因为,dtdsv得,)]12(cos2[dtTtTtcds对等式两边同时积分,可得:)].2sin2(221[2tTtTTtcs3例3宽度为d的河流,其流速与到河岸的距离成正比。在河岸处,水流速度为零,在河流中心处,其值为.c一小船以相对速度u沿垂直于水流的方向行驶,求船的轨迹以及船在对岸靠拢的地点。解以一岸边为x轴,垂直岸的方向为y轴,如图建立坐标系。所以水流速度为y.2),(,20,dydydkdykyvdox由河流中心处水流速度为c,故)2(2ddkdkc,所以dck2.当20dy时,ydcv2,即,2ydcdtdx,uty(1)得tdtdcudx2.两边积分,有xtdttdcudx00,22tdcux,(2)由(1)-(2),得,2yudcx20dy.(3)同理,当dyd2时,)(2yddcv,即),(2)(2utddcyddcdtdxdtutddcdx)(2,Dyudcyucx22,(4)4其中D为一常数。由(3)知,当2dy时,ucdx4,代入(4),得ucdD2,于是,222ucdyudcyucxdyd2.所以船的轨迹为.2,22,20,22dyducdyudcyucxdyyudcx船在对岸的靠拢地点,即dy时有.2ucdx例4将质量为m的质点竖直抛上于有阻力的媒质中。设阻力与速度平方成正比,即.22gvmkR如上掷时的速度为0v,试证此质点又落至投掷点时的速度为.120201vkvv解:质点从抛出到落回抛出点分为上升和下降两阶段。取向上的力为正,如图,两个过程的运动方程为:vR上升:,22ygmkmgym。。下降:.22ygmkmgymmgv上升时R下降时mg对上升的阶段:)1(22vkgdtdv,即),1(22vkgdyvdvdtdydydv于是gdyvkvdv221.两边积分002201vhgdyvkvdv,得质点到达的高度)1ln(212022vkgkh.(1)对下降的阶段:),1(22vkgdyvdvdtdydydv即得100221vhgdyvkvdv,得)1ln(212122vkgkh.(2)由(1)=(2)得.120201vkvv5二积分的应用分析利用积分的概念与运算,可解决一些关于某个区域累积量的求解问题。求物体的转动惯量、求电场强度等问题都是典型的求关于某个区域累积量的问题。在求解这类问题时,应结合问题的物理意义,明确是在对哪个变量,在哪个区域上进行累积。并应充分利用区域的对称性,这样可将复杂的积分问题简化,降低积分的重数,较简捷地解决具体问题。例5一半径为R的非均质圆球,在距中心r处的密度为:),1(220Rr式中0和都是常数。试求此圆球饶直径转动时的回转半径。解:设dm表示距球心为r的一薄球壳的质量,则drRrrdrrdm)1(22202,所以此球对球心的转动惯量为.3557)1(502204002RdrRrrdmrIRR(1)在对称球中,饶直径转动时的转动惯量为II32,(2)又因球的质量为RRRdrRrrdmm03022020.1535)1((3)又饶直径的回转半径,mIk(4)由(1)-(4),得.21351014Rk例6试证明立方体饶其对角线转动时的回转半径为23dk,式中d为对角线的长度。解:建立坐标系,设O为立方体的中心,轴,Ox,OyOz分别与立方体的边平行。由对称性知,,Ox,OyOz轴即立方体中心惯量的主轴。设立方体的边长为.a6由以上所设,平行于Ox轴的一小方条的体积为adydz,于是立方体饶Ox的转动惯量为.6)(2222222amdydzzyaIaaaax根据对称性得:.62amIIIzyx易知立方体的对角线与,Ox,OyOz轴的夹角都为,且,31cos故立方体饶对角线的转动惯量为.6coscoscos2222amIIIIzyx(1)又由于ad3,(2)饶其对角线转动时的回转半径为,mIk(3)由(1)-(3)得.23dk例7一个塑料圆盘,半径为,R电荷q均匀分布于表面,圆盘饶通过圆心垂直盘面的轴转动,角速度为,求圆盘中心处的磁感应强度。解:电荷运动形成电流,带电圆盘饶中心轴转动,相当于不同半径的圆形电流。圆盘每秒转动次数为2,圆盘表面上所带的电荷面密度为2Rq,在圆盘上取一半径为r,宽度为dr的细圆环,它所带的电量为rdrdq2,圆盘转动时,与细圆环相当的圆环电流的电流强度为rdrrdrdI22,它在轴线上距盘心x处的P点所产生的磁感应强度为rdrxrrxrdIrdB232220232220)(2)(2,)(2232230drxrr7故P点处的总磁感应强度为RdrxrrB0232230,)(2变换积分drxrrxdrxrrdrxrr23222212223223)()()(所以]2[2222220xxRxxRB]22[2222220xxRxRRq,B的方向与方向相同(0q)或()0q.于是在圆盘中心0x处,磁感应强度.20RqB例8雨滴下落时,其质量的增加率与雨滴的表面积成正比,求雨滴速度与时间的关系。解:设雨滴的本体为.m由物理学知.)(Fmvdtd(1)1)在处理这类问题时,常常将模型的几何形状理想化。对于雨滴,我们常将它看成球形,设其半径为,r则雨滴质量m是与半径r的三次方成正比,密度看成是不变的,于是31rkm,(2)其中1k为常数。2)由题设知,雨滴质量的增加率与其表面积成正比,即,4222rkrkdtdm(3)其中2k为常数。由(2),得.321dtdrrkdtdm(4)由(3)=(4),得.312kkdtdr(5)8对(5)两边积分:,0rattddr得,atr(6)将(6)代入(2),得.)(31atkm(7)3)以雨滴下降的方向为正,分析(1)式,)(])([3131gatkvatkdtd(8),)(])([301310gdtatkvatkdtv,)(41)(34131katgkvatk(3k为常数)当0t时,0v,故,4413gakk].)([434ataatgv三曲线、曲面积分的应用分析曲线、曲面积分的概念与运算在物理学中应用非常广泛,灵活应用曲线、曲面积分,往往能使问题得到简化。在求磁感应强度、磁通量这类问题时,高斯公式往往是有效的。例9设力,kFjFiFFzyx其中,206233ybxyabzFx36abxzFy,104ybx,182abxyzFz验证F为保守力,并求出其势能。解:为验证F是否为保守力,将题设中力F的表达式代入F,得xxxFFFzyxkjiFkyFxFjxFzFizFyFxyzxyz)()()(jyabzyabziabxzabxz)1818()1818(2222kyabxabzyabxabz)406406(3333,0于是F是保守力。故其势能为9drFV)(),,()0,0,0(dzFdyFdxFzzyxyx)0,0,()0,0,0()0,,()0,0,(43233)106()206(xyxxdyybxabxzdxybxyabz),,()0,,(218zyxyxdzabxyz.65324abxyzybx例10一个半径为R的球体内,分布着电荷体密度,kr式中r是径向距离,k是常量。求空间的场强分布,并求E与r的关系。解:(1)由于在球体内电荷是球对称分布的,故产生的电场也是球对称分布的,因此可用高斯定理求解。取与球面同心的球面作为高斯面。1)当Rr时,qdsE01,而24rEdsE,(1),41114002000rkdrrkrdvqr(2)由(1)=(2),得,4)(20rkrE方向为径向方向。2)当Rr时,由高斯定理qdsE01,有24rEdsE,(3),41114002000RkdrrkrdvqR(4)由(3)=(4),得,4)(204rkRrE方向沿径向方向。例11一根很长的铜导线,载有电流10A,在导线内部通过中心线作一平面S试计算通过导线m1长的S平面内的磁感应通量。解:由电流分布具有轴对称性可知,其产生的磁场也具有轴对称性,以下用安培环路定理求解。取以轴线为圆心的半径为r的同心圆环为积分环路,由安培环路定理IdlB0,有rBdlB2,(1)10:)(Rr,12200rRI(2)由(1)=(2),所以有.220rRIB在剖面上取面积微元ldrds,有.220ldrrRIdsBd所以单位长)1(ml的导线内通过剖面的磁通量为.1041010442670020WbIdrRIrdsR例12在半径为R的金属球之外包有一层均匀介质层,外半径为.R设电介质的相对电容率为,r金属球的电荷量为,Q求:1)介质层内、外的场强分布;2)介质层内、外的电势分布;3)金属球的电势。解:1)由高斯定理qdsD,可得:)(RrR,421rQDrDE01,420rQ

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功