智浪教育-普惠英才2012年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。第Ⅰ卷1至2页,第Ⅱ卷3至5页。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。祝各位考生考试顺利!第Ⅰ卷注意事项:本卷共8小题,每小题5分,共40分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)i是虚数单位,复数ii37=(A)2+i(B)2–i(C)-2+i(D)-2–i(2)设,R则“0”是“))(cos()(Rxxxf为偶函数”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分与不必要条件(3)阅读右边的程序框图,运行相应的程序,当输入x的值为-25时,输出x的值为(A)-1(B)1(C)3(D)9(4)函数22)(3xxfx在区间(0,1)内的零点个数是(A)0(B)1(C)2(D)3(5)在52)12(xx的二项展开式中,x的系数为(A)10(B)-10(C)40(D)-40(6)在ABC中,内角A,B,C所对的边分别是cba,,,已知8b=5c,C=2B,则cosC=(A)257(B)257(C)257(D)2524(7)已知ABC为等边三角形,AB=2,设点P,Q满足ABAP,ACAQ)1(,开始输入x|x|1?1||xxx=2x+1输出x结束是否∙CPBQ智浪教育-普惠英才R,若23,则=(A)21(B)221(C)2101(D)2223(8)设Rnm,,若直线02)1()1(ynxm与圆1)1()1(22yx相切,则m+n的取值范围是(A)]31,31[(B)),31[]31,((C)]222,222[(D)),222[]222,(第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.(9)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取_________所学校,中学中抽取________所学校.(10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为_________m3.(11)已知集合},32|{xRxA集合},0)2)((|{xmxRxB且),,1(nBA则m=__________,n=__________.(12)已知抛物线的参数方程为ptyptx2,22(t为参数),其中p0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=_________.(13)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D.过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=23,则线段CD的长为____________.(14)已知函数112xxy的图象与函数2kxy的图象恰有两个交点,则实数k的取值范围是_________.31363223侧视图俯视图正视图FECDBA智浪教育-普惠英才三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)已知函数.,1cos2)32sin()32sin()(2Rxxxxxf(Ⅰ)求函数)(xf的最小正周期;(Ⅱ)求函数)(xf在区间]4,4[上的最大值和最小值.(16)(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记YX,求随机变量的分布列与数学期望E.(17)(本小题满分13分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(Ⅰ)证明PC⊥AD;(Ⅱ)求二面角A-PC-D的正弦值;(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.(18)(本小题满分13分)已知}{na是等差数列,其前n项和为Sn,}{nb是等比数列,且27,24411baba,1044bS.(Ⅰ)求数列}{na与}{nb的通项公式;(Ⅱ)记nnnnbababaT1211,*Nn,证明nnnbaT10212DCBAP智浪教育-普惠英才(*Nn).(19)(本小题满分14分)设椭圆22221(0)xyabab的左、右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.(Ⅰ)若直线AP与BP的斜率之积为21,求椭圆的离心率;(Ⅱ)若|AP|=|OA|,证明直线OP的斜率k满足.3k(20)(本小题满分14分)已知函数)ln()(axxxf的最小值为0,其中.0a(Ⅰ)求a的值;(Ⅱ)若对任意的),,0[x有)(xf≤2kx成立,求实数k的最小值;(Ⅲ)证明nini12)12ln(122(*Nn).