2000年全国初中数学联合竞赛试题及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2000年全国初中数学联合竞赛试题2005年全国初中数学联赛初赛试卷及答案2005年全国初中数学联赛决赛试卷及答案2007年全国初中数学联赛决赛一试试题及答案2007年全国初中数学联赛决赛第二试试题及答案2008年全国初中数学联赛2008年4月13日上午8:30—9:30一、选择题:(本题满分42分,每小题7分)1、设a2+1=3a,b2+1=3b,且a≠b,则代数式21a+21b的值为()(A)5(B)7(C)9(D)112、如图,设AD,BE,CF为△ABC的三条高,若AB=6,BC=5,EF=3,则线段BE的长为()(A)185(B)4(C)215(D)2453、从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是()(A)15(B)310(C)25(D)124、在△ABC中,∠ABC=12°,∠ACB=132°,BM和CN分别是这两个角的外角平分线,且点M,N分别在直线AC和直线AB上,则()(A)BMCN(B)BM=CN(C)BMCN(D)BM和CN的大小关系不确定5、现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r,则r的最小值为()(A)(98)3(B)(98)4(C)(98)5(D)986、已知实数x,y满足(x–22008x)(y–22008y)=2008,则3x2–2y2+3x–3y–2007的值为()(A)–2008(B)2008(C)–1(D)1二、填空题:(本题满分28分,每小题7分)1、设a=512,则5432322aaaaaaa=。2、如图,正方形ABCD的边长为1,M,N为BD所在直线上的两点,且AM=5,∠MAN=135°,则四边形AMCN的面积为。CBFDAECBDANMO3、已知二次函数y=x2+ax+b的图象与x轴的两个交点的横坐标分别为m,n,且|m|+|n|≤1。设满足上述要求的b的最大值和最小值分别为p,q,则|p|+|q|=。4、依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是。答案:B、D、C、B、B、D;–2、52、12、1。解答:一、1、由题设条件可知a2–3a+1=0,b2–3b+1=0,且a≠b,所以a,b是一元二次方程x2–3x+1=0的两根,故a+b=3,ab=1,因此21a+21b=2222abab=22()2()ababab=223211=7;2、因为AD,BE,CF为△ABC的三条高,易知B,C,E,F四点共圆,于是△AEF∽△ABC,故AFAC=EFBC=35,即cos∠BAC=35,所以sin∠BAC=45。在Rt△ABE中,BE=ABsin∠BAC=6×45=245;3、能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个,所以所组成的数是3的倍数的概率是820=25;4、∵∠ABC=12°,BM为∠ABC的外角平分线,∴∠MBC=12(180°–12°)=84°,又∠BCM=180°–∠ACB=180°–132°=48°,∴∠BCM=180°–84°–48°=48°,∴BM=BC,又∠ACN=12(180°–∠ACB)=12(180°–132°)=24°,∴∠BNC=180°–∠ABC–∠BCN=180°–12°–(∠ACB+∠CAN)=12°=∠ABC,∴CN=CB,因此,BM=BC=CN;5、容易知道,4天之后就可以出现5种商品的价格互不相同的情况。设5种商品降价前的价格为a,过了n天,n天后每种商品的价格一定可以表示为a∙(1–10%)k∙(1–20%)n–k=a∙(910)k∙(810)n–k,其中k为自然数,且0≤k≤n,要使r的值最小,五种商品的价格应该分别为:a∙(910)i∙(810)n–i,a∙(910)i+1∙(810)n–i–1,a∙(910)i+2∙(810)n–i–2,a∙(910)i+3∙(810)n–i–3,a∙(910)i+4∙(810)n–i–4,其中i为不超过n的自然数,所以r的最小值为4498()()101098()()1010iniiniaa=(98)4;6、∵(x–22008x)(y–22008y)=2008,∴x–22008x=220082008yy=y+22008y,y–22008y=220082008xx=x+22008x,由以上两式可得x=y,所以(x–22008x)2=2008,解得x2=2008,所以3x2–2y2+3x–3y–2007=3x2–2x2+3x–3x–2007=x2–2007=1;二、1、∵a2=(512)2=352=1–a,∴a2+a=1,∴原式=32322()2()2(1)aaaaaaaa=33212()aaaa=321aa=–311aa=–(1+a+a2)=–(1+1)=–2;2、设BD中点为O,连AO,则AO⊥BD,AO=OB=22,MO=22AMAO=322,∴MB=MO–OB=2。又∠ABM=∠NDA=135°,∠NAD=∠MAN–∠DAB–∠MAB=135°–90°–∠MAB=45°–∠MAB=∠AMB,所以△ADN∽△MBA,故ADMB=DNBA,从而DN=ADMB∙BA=12×1=22,根据对称性可知,四边形AMCN的面积S=2S△MAN=2×12×MN×AO=2×12×(22+2+2)×22=52;3、根据题意,m,n是一元二次方程x2+ax+b=0的两根,所以m+n=–a,mn=b。∵|m|+|n|≤1,∴|m+n|≤|m|+|n|≤1,|m–n|≤|m|+|n|≤1。∵方程x2+ax+b=0的判别式△=a2–4b≥0,∴b≤24a=2()4mn≤14。4b=4mn=(m+n)2–(m–n)2≥(m+n)2–1≥–1,故b≥–14,等号当m=–n=12时取得;4b=4mn=(m+n)2–(m–n)2≤1–(m–n)2≤1,故b≤14,等号当m=n=12时取得。所以p=14,q=–14,于是|p|+|q|=12;4、12到32,结果都只各占1个数位,共占1×3=3个数位;42到92,结果都只各占2个数位,共占2×6=12个数位;102到312,结果都只各占3个数位,共占3×22=66个数位;322到992,结果都只各占4个数位,共占4×68=272个数位;1002到3162,结果都只各占5个数位,共占5×217=1085个数位;此时还差2008–(3+12+66+272+1085)=570个数位。3172到4112,结果都只各占6个数位,共占6×95=570个数位。所以,排在第2008个位置的数字恰好应该是4112的个位数字,即为1;2008年全国初中数学联赛2008年4月13日上午10:00—11:30第二试(A)一、(本题满分20分)已知a2+b2=1,对于满足条件0≤x≤1的一切实数x,不等式a(1–x)(1–x–ax)–bx(b–x–bx)≥0(1)恒成立,当乘积ab取最小值时,求a,b的值。解:整理不等式(1)并将a2+b2=1代入,得(1+a+b)x2–(2a+1)x+a≥0(2),在(2)中,令x=0,得a≥0;令x=1,得b≥0。易知1+a+b0,0212(1)aab1,故二次函数y=(1+a+b)x2–(2a+1)x+a的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间。由题设知,不等式(2)对于满足条件0≤x≤1的一切实数x恒成立,所以它的判别式△=(2a+1)2–4a(1+a+b)≤0,即ab≥14。由方程组22114abab(3)消去b,得16a4–16a2+1=0,所以a2=234或a2=234。又因为a≥0,所以a1=624或a2=624,于是b1=624或b2=624。所以ab的最小值为14,此时a,b的值分别为a=624,b=624和a=624,b=624。二、(本题满分25分)如图,圆O与圆D相交于A,B两点,BC为圆D的切线,点C在圆O上,且AB=BC。(1)证明:点O在圆D的圆周上;(2)设△ABC的面积为S,求圆D的的半径r的最小值。解:(1)连OA,OB,OC,AC,因为O为圆心,AB=BC,所以△OBA∽△OBC,从而∠OBA=∠OBC,因为OD⊥AB,DB⊥BC,所以∠DOB=90°–∠OBA=90°–∠OBC=∠DBO,所以DB=DO,因此点O在圆D的圆周上;(2)设圆O的半径为a,BO的延长线交AC于点E,易知BE⊥AC。设AC=2y(0y≤a),OE=x,AB=l,则a2=x2+y2,S=y(a+x),l2=y2+(a+x)2=y2+a2+2ax+x2=2a2+2ax=2a(a+x)=2aSy。因为∠ABC=2∠OBA=2∠OAB=∠BDO,AB=BC,DB=DO,所以△BDO∽△ABC,CBDAEO所以BDAB=BOAC,即rl=2ay,故r=2aly,所以r2=2224aly=224ay∙2aSy=2S∙(ay)3≥2S,即r≥22S,其中等号当a=y时成立,这时AC是圆O的直径.所以圆D的的半径r的最小值为22S。三、(本题满分25分)设a为质数,b为正整数,且9(2a+b)2=509(4a+511b)(1)求a,b的值。解:(1)式即(63509ab)2=4511509ab,设m=63509ab,n=4511509ab,则n=m2,b=50963ma=5094511na(2),故3n–511m+6a=0,所以3m2–511m+6a=0(3),由(1)式可知,(2a+b)2能被质数509整除,于是2a+b能被509整除,故m为整数,即关于m的一元二次方程(3)有整数根,所以它的判别式△=5112–72a为完全平方数。不妨设△=5112–72a=t2(t为自然数),则72a=5112–t2=(511+t)(511–t),由于511+t和511–t的奇偶性相同,且511+t≥511,所以只可能有以下几种情况:①511365112tat,②511185114tat,③511125116tat,④511651112tat,两式相加分别得36a+2=1022,18a+4=1022,12a+6=1022,6a+12=1022,均没有整数解;⑤511451118tat,⑥511251136tat,两式相加分别得4a+18=1022,解得a=251;2a+36=1022,解得a=493,而493=17×29不是质数,故舍去。综合可知a=251。此时方程(3)的解为m=3或m=5023(舍去)。把a=251,m=3代入(2)式,得b=509362513=7。第二试(B)一、(本题满分20分)已知a2+b2=1,对于满足条件x+y=1,xy≥0的一切实数对(x,y),不等式ay2–xy+bx2≥0(1)恒成立,当乘积ab取最小值时,求a,b的值。解:由x+y=1,xy≥0可知0≤x≤1,0≤y≤1。在(1)式中,令x=0,y=1,得a≥0;令x=1,y=0,得b≥0。将y=1–x代入(1)式,得a(1–x)2–x(1–x)+bx2≥0,即(1+a+b)x2–(2a+1)x+a≥0(2),易知1+a+b0,0212(1)aab1,故二次函数y=(1+a+b)x2–(2a+1)x+a的图象(抛物线)的开口向上,且顶点的横坐标在

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功