2007年上海市初中毕业生统一学业考试数学试卷考生注意:1.本卷含四大题,共25题;2.除第一、二大题外,其余各题如无特别说明,都必须写出证明或计算的主要步骤.一、填空题:(本大题共12题,满分36分)[只要求直接写出结果,每个空格填对得3分,否则得零分]1.计算:2(3).2.分解因式:222aab.3.化简:111xx.[来源:学§科§网]4.已知函数3()2fxx,则(1)f.5.函数2yx的定义域是.6.若方程2210xx的两个实数根为1x,2x,则12xx.7.方程12x的根是.8.如图1,正比例函数图象经过点A,该函数解析式是.9.如图2,E为平行四边形ABCD的边BC延长线上一点,连结AE,交边CD于点F.在不添加辅助线的情况下,请写出图中一对相似三角形:.[来源:学*科*网Z*X*X*K]10.如果两个圆的一条外公切线长等于5,另一条外公切线长等于23a,那么a.11.如图3,在直角坐标平面内,线段AB垂直于y轴,垂足为B,且2AB,如果将线段AB沿y轴翻折,点A落在点C处,那么点C的横坐标是.12.图4是44正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图4中黑色部分是一个中心对称图形.二、选择题:(本大题共4题,满分16分)【下列各题的四个结论中,有且只有一个结论是正确的,把正确结论的代号写在题后的圆括号内,选对得图1xyAO13图2ABCDEF图3xyBAO图44分;不选、错选或者多选得零分】13.在下列二次根式中,与a是同类二次根式的是()A.2aB.23aC.3aD.4a14.如果一次函数ykxb的图象经过第一象限,且与y轴负半轴相交,那么()A.0k,0bB.0k,0bC.0k,0bD.0k,0b15.已知四边形ABCD中,90ABC∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()A.90D∠B.ABCDC.ADBCD.BCCD16.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图5所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块三、(本大题共5题,满分48分)17.(本题满分9分)解不等式组:3043326xxx,,并把解集在数轴上表示出来.18.(本题满分9分)解方程:22321011xxxxx.19.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)如图6,在直角坐标平面内,O为原点,点A的坐标为(100),,点B在第一象限内,5BO,3sin5BOA∠.求:(1)点B的坐标;(2)cosBAO∠的值.20.(本题满分10分,第(1)小题满分4分,第(2),(3)小题满分各3分)初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样数据,如表一所示.请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答:;估计该校全体初二学生平均每周上网时间为小时;51432012345图6xOBy图5(2)根据具体代表性的样本,把图7中的频数分布直方图补画完整;(3)在具有代表性的样本中,中位数所在的时间段是小时/周.时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)表一21.(本题满分10分)2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如表二所示,表中缺失了2003年、2007年相关数据.已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中信息,求2003年和2007年的药品降价金额.年份20012003200420052007降价金额(亿元)543540表二四、(本大题共4题,满分50分)22.(本题满分12分,每小题满分各6分)在直角坐标平面内,二次函数图象的顶点为(14)A,,且过点(30)B,.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.[来源:学#科#网Z#X#X#K]23.(本题满分12分,每小题满分各6分)如图8,在梯形ABCD中,ADBC∥,CA平分BCD∠,DEAC∥,交BC的延长线于点E,2BE∠∠.(1)求证:ABDC;(2)若tg2B,5AB,求边BC的长.24.(本题满分12分,每小题满分各4分)图7(每组可含最低值,不含最高值)01234小时/周246810121416182022人数ABCDE图8如图9,在直角坐标平面内,函数myx(0x,m是常数)的图象经过(14)A,,()Bab,,其中1a.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连结AD,DC,CB.(1)若ABD△的面积为4,求点B的坐标;(2)求证:DCAB∥;(3)当ADBC时,求直线AB的函数解析式.25.(本题满分14分,第(1)小题满分4分,第(2),(3)小题满分各5分)已知:60MAN∠,点B在射线AM上,4AB(如图10).P为直线AN上一动点,以BP为边作等边三角形BPQ(点BPQ,,按顺时针排列),O是BPQ△的外心.(1)当点P在射线AN上运动时,求证:点O在MAN∠的平分线上;(2)当点P在射线AN上运动(点P与点A不重合)时,AO与BP交于点C,设APx,ACAOy,求y关于x的函数解析式,并写出函数的定义域;(3)若点D在射线AN上,2AD,圆I为ABD△的内切圆.当BPQ△的边BP或BQ与圆I相切时,请直接写出点A与点O的距离.[来源:Zxxk.Com]2007年上海市初中毕业生统一学业考试数学试卷答案要点与评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分.2.第一大题只要求直接写出结果,每个空格填对得3分,否则得零分;第二大题每题选对得4分,不选、错选或者多选得零分;17题至25题中右端所注的分数,表示考生正确做对这一步应得分数,评分时,给分或扣分均以1分为单位.答案要点与评分标准一、填空题(本大题共12题,满分36分)图9xCODBAyABMQNPO图10ABMQNPO备用图1.32.2()aab3.1(1)xx4.15.2x≥6.27.3x8.3yx9.AFDEFC△∽△(或EFCEAB△∽△,或EABAFD△∽△)10.111.212.答案见图1二、选择题(本大题共4题,满分16分)13.C14.B15.D16.B三、(本大题共5题,满分48分)17.解:由30x,解得3x.···································································3分由43326xx,解得1x.·······································································3分不等式组的解集是13x.·····································································1分解集在数轴上表示正确.·················································································2分18.解:去分母,得23(21)(1)0xxxx,···············································3分整理,得23210xx,··············································································2分解方程,得12113xx,.··········································································2分经检验,11x是增根,213x是原方程的根,原方程的根是13x.··············2分19.解:(1)如图2,作BHOA,垂足为H,················································1分在RtOHB△中,5BO,3sin5BOA,3BH.·································································································2分4OH.………………………………1分点B的坐标为(43),.……………………2分(2)10OA,4OH,6AH.………………1分在RtAHB△中,3BH,35AB.…………1分25cos5AHBAOAB.………………………………2分20.(1)小杰;1.2.·············································································2分,2分(2)直方图正确.·························································································3分(3)0~1.···································································································3分21.解:[解法一]设2003年和2007年的药品降价金额分别为x亿元、y亿元.··········1分图1AyHO图2xB根据题意,得226543540269yxxy………………………………………………………………分………………………………………………分解方程组,得2220120xy………………………………………………………………………分………………………………………………………………………分答:2003年和2007年的药品降价金额分别为20亿元和120亿元.··························1分[解法二]设2003年的药品降价金额为x亿元,······················································1分则2007年的药品降价金额为6x亿元.·······························································2分根据题意,得5435406269xx.························································2分解方程,得20x,6120x.····································································4分答:2003年和2007年的药品降价金额分别为20亿元和120亿元.··························1分四、(本大题共4题,满分50分)22.解:(1)设二次函数解析式为2(1)4yax,·····································