2010年上海市初中毕业统一学业考试数学卷(满分150分,考试时间100分钟)姓名得分一、选择题(本大题共6题,每题4分,满分24分)1.下列实数中,是无理数的为()A.3.14B.13C.3D.92.在平面直角坐标系中,反比例函数y=kx(k<0)图像的量支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限3.已知一元二次方程210xx,下列判断正确的是()A.该方程有两个相等的实数根B.该方程有两个不相等的实数根C.该方程无实数根D.该方程根的情况不确定4.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C),这组数据的中位数和众数分别是()A.22°C,26°CB.22°C,20°CC.21°C,26°CD.21°C,20°C5.下列命题中,是真命题的为()A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似6.已知圆O1、圆O2的半径不相等,圆O1的半径长为3,若圆O2上的点A满足AO1=3,则圆O1与圆O2的位置关系是()A.相交或相切B.相切或相离C.相交或内含D.相切或内含[来源:学科网ZXXK]二、填空题(本大题共12题,每题4分,满分48分)7.计算:a3÷a2=__________.8.计算:(x+1)(x─1)=____________.9.分解因式:a2─ab=______________.10.不等式3x─2>0的解集是____________.11.方程x+6=x的根是____________.12.已知函数f(x)=1x2+1,那么f(─1)=___________.13.将直线y=2x─4向上平移5个单位后,所得直线的表达式是______________.14.若将分别写有“生活”、“城市”的2张卡片,随机放入“让更美好”中的两个内(每个只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是__________15.如图1,平行四边形ABCD中,对角线AC、BD交于点O设向量,ADaABb,则向量AO__________.(结果用a、b表示)16.如图2,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=2,AD=1,则DB=__________.17.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图3所示当时0≤x≤1,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为_____________.18.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图4所示)把线段AE绕点A旋转,使ODABC图1DABC图2O12160图3CDABE图4点E落在直线BC上的点F处,则F、C两点的距离为___________.三、解答题(本大题共7题,19~22题每题10分,23、24题每题12分,25题14分,满分78分)19.计算:12131427(31)()23120.解方程:xx─1─2x─2x─1=021.机器人“海宝”在某圆形区域表演“按指令行走”,如图5所示,“海宝”从圆心O出发,先沿北偏西67.4°方向行走13米至点A处,再沿正南方向行走14米至点B处,最后沿正东方向行走至点C处,点B、C都在圆O上.(1)求弦BC的长;(2)求圆O的半径长.(本题参考数据:sin67.4°=1213,cos67.4°=513,tan67.4°=125)22.某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A、B、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成图6.(1)在A出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A出口的被调查游客人数的__________%.(2)试问A出口的被调查游客在园区内人均购买了多少瓶饮料?(3)已知B、C两个出口的被调查游客在园区内人均购买饮料的数量如表一所示若C出口的被调查人数比B出口的被调查人数多2万,且B、C两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B出口的被调查游客人数[来源:学科网]为多少万?23.已知梯形ABCD中,AD//BC,AB=AD(如图7所示),∠BAD的平分线AE交BC于点E,连结DE.[来源:学#科#网](1)在图7中,用尺规作∠BAD的平分线AE(保留作图痕迹,不写作法),并证明四边形ABED是菱形;(2)∠ABC=60°,EC=2BE,求证:ED⊥DC.24.已知平面直角坐标系xOy,抛物线y=-x2+bx+c过点A(4,0)、B(1,3).出口BC人均购买饮料数量(瓶)321.522.53101234人数(万人)饮料数量(瓶)图667.4AC北南BONS图5BADC图7表一(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l,设抛物线上的点P(m,n)在第四象限,点P关于直线l的对称点为E,点E关于y轴的对称点为F,若四边形OAPF的面积为20,求m、n的值.25.如图9,在Rt△ABC中,∠ACB=90°.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE并延长,与线段BC的延长线交于点P.(1)当∠B=30°时,连结AP,若△AEP与△BDP相似,求CE的长;(2)若CE=2,BD=BC,求∠BPD的正切值;(3)若1tan3BPD,设CE=x,△ABC的周长为y,求y关于x的函数关系式.图9图10(备用)图11(备用)[来源:学+科+网Z+X+X+K]