OEBCAD第3题图6745123第2题图2013年全国初中数学竞赛预赛试题及参考答案一、选择题(共6小题,每小题6分,共36分)以下每小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0分)1.若有理数a、b满足(1)7()0aab,则ab等于【】(A)1(B)1(C)0(D)无法确定【答】A.解:因为a、b都是有理数,且(1)7()0aab,所以10a,且0ab,得1,1ab,所以1ab.2.如图,由7个小正方形组成的平面图形折叠(相邻的两个面垂直)成正方体后,重叠的两个面所标数字是【】(A)1和7(B)1和6(C)2和7(D)2和6【答】B.解:若将图中标有1的面去掉,则标有2、3、4、5、6、7的六个面恰好是正方体的一种展开图,其中标有3和6的面是对面;只看题图最下面一行,标有3和1的面应是对面,所以重叠的两个面是标有1和6的面,应选B.3.如图,在四边形ABCD中,AD∥BC,BD平分∠ABC交AC于点O,AE平分∠CAD交BD于点E,∠ABC=,∠ACB=,给出下列结论:①∠DAE=12;②ADAOCBCO;③∠AEB=1()2;④∠ACD=180().其中一定正确的有【】(A)4个(B)3个(C)2个(D)1个【答】B.解:(1)∵AD∥BC,∴∠DAE=111222DACACB,∴①正确;(2)∵AD∥BC,∴△AOD∽△COB,∴ADAOCBCO,∴②正确;(3)∠AEB=∠DAE+∠ADB=∠DAE+∠CBD=1()2,∴③正确;(4)∵∠BAC=180(),只有当AB∥DC时,∠ACD=180()才35PQ23410631111515B20104A111能成立.∴④不正确.综上,应选B.4.如图,直线l1、l2相交于点)2,3(A,l1、l2与x轴分别交于点(1,0)B和(2,0)C,则当012yy时,自变量x的取值范围是【】(A)2x(B)1x(C)13x(D)23x【答】C.解:由图象可知当12yy时,3x,当01y时,1x,所以当012yy时,13x.故应选C.5.关于x的不等式33axax的解集为3x,则a应满足【】(A)1a(B)1a(C)a≥1(D)a≤1【答】B.解:由33axax,得(1)(3)0ax,由不等式的解集为3x,知30x,所以10a,得1a.故应选B.6.如图的象棋盘中,“卒”从A点走到B点,最短路径共有【】(A)14条(B)15条(C)20条(D)35条【答】D.解:如右图,从点A出发,每次向上或向右走一步,到达每一点的最短路径条数如图中所标数字,如:到达点P、Q的最短路径条数分别为2和3.以此类推,到达点B的最短路径条数为35条.选D.二、填空题(共6小题,每小题6分,共36分)7.计算:322.【答】212.解:原式=22211.228.如图是三个反比例函数xky1,xky2,xky3在x轴上方的图象,则1k、2k、3k的大小关系为.第6题图第8题图yxOy=k3xy=k2xy=k1x第4题图O第4题图OAAAyxl1l2CB111bxky222ykxb阿Ayxl1l2CB111bxky222ykxb【答】123kkk.解:由图象可知1k为负数,2k、3k为正数,不妨取x=1,代入解析式,显然点2(1,)Ak在点3(1,)Bk的正下方,所以320kk,又1k为负数,所以123kkk.9.有6个小球,其中黑色、红色、绿色各2个,它们除颜色外其它都一样,将它们放入一个不透明的袋子中,充分摇匀后,从中随机摸出2个球,摸出的球颜色一样的概率是.【答】15.解:摸出的2个球都是黑球的概率是2116515,所以摸出的球颜色一样的概率是113155.10.如图,点C是线段AB上一个动点,∠A=∠B=30°,∠ADC=∠BEC=90°,若AB=8cm,则CD+CE=cm.【答】4.解:在Rt△ADC中,∠A=30°,得ACDC21,同理BCEC21,所以4212121ABBCACECDC(cm).11.关于x的方程2(1)20xmxm的两实数根之积等于272mm,则8m的值是.【答】4.解:由题意得2272mmm,解得120,8mm,当10m时,原方程无实数根,当28m时,原方程有两个不相等的实数根,所以8164m.12.计算:1111111111111145667134567034567145116670.【答】12013.解:令1111456670a,则原式=1671a13a113671a×a=211132013671aaa2113671aaa=12013.三、解答题(第13题14分,第14题16分,第15题18分,共48分)13.某单位职工参加市工会组织的健身操比赛进行列队,已知6人一列少2GFBHEDAC人,5人一列多2人,4人一列不多不少,请问这个单位参加健身操比赛的职工至少有几人?【答案】设这个单位参加健身操比赛的职工有y人,6人、5人、4人一列分别可以整排a、b、c列,则62524yabc.(a、b、c是正整数)∴6252,624.abac①②·················································4分由②,得62312(1).422aaaac因为c为正整数,可令12,am所以21,am(m是正整数)③将③代入①,得6(21)252.mb∴122102(1).55mmmb··················································7分因为b为正整数,可令15,mn所以51,mn(n是正整数)④将④代入③,得2(51)1101.ann···································11分∴626(101)2608.yann(n是正整数).当n=1时,y有最小值52.即参加比赛列队的至少有52人.········14分14.如图,在边长为1的正方形ABCD的边AB上任取一点E(A、B两点除外),过E、B、C三点的圆与BD相交于点H,与正方形ABCD的外角平分线相交于点F,与CD相交于点G.(1)求证:四边形EFCH是正方形;(2)设BE=x,△CGH的面积是y,求y与x的函数解析式,并求y的最大值.【答案】(1)∵E、B、C、H、F在同一圆上,且∠EBC=90°,∴∠EHC=90°,∠EFC=90°.·················································2分又∠FBC=∠HBC=45°,∴CF=CH.······································4分∵∠HBF+∠HCF=180°,∴∠HCF=90°.·······························6分∴四边形EFCH是正方形.···················································8分(2)∵∠GHB+∠GCB=180°,∴∠GHB=90°,由(1)知∠CHE=90°,∴∠CHG+∠CHB=∠EHB+∠CHB.∴∠CHG=∠EHB.∴CG=BE=x,∴DG=1DCCGx.·······························12分∴△CGH中,CG边上是高为11(1).22DGx图③FEDBAC∴211111(1).224216yxxx····································15分当x=12时,y有最大值116.·················································16分15.数学活动课上,李老师出示了问题:已知,如图①,在△ABC中,∠BAC=45°,AB=AC,AD⊥BC,垂足为D,设BD=a,用含有a的式子表示AD的长.图①图②DBCFEDBCAA经过思考和探讨,小明展示了一种解题思路:如图②,作∠DAE=45°,AE和BC的延长线相交于点E,过点C作CF⊥AE于点F.通过证明△ABD≌△ACF,得到CF=a,进而推出CE=2a,所以AD=DE=CD+CE=2(12).aaa在此基础上,李老师又提出了如下问题:已知△ABC中,∠BAC=45°,AB>AC,AD是BC边上的高,设BD=a,CD=b,求AD的长.请你画图并解答这个问题.【答案】(1)当∠ACB为直角时,△ABC为直角三角形,b=0,AD=AC=BD=a.·········································································2分(2)当∠ACB为锐角时,如图③,作∠DAE=45°,AE和BC的延长线相交于点E,过点C作CF⊥AE于点F.则△CEF和△ADE都是等腰直角三角形.设ADDEx,CFEFm.则2AEx.∴2AFxm.··4分∵∠FAC+∠CAD=45°,∠DAB+∠CAD=45°,∴∠FAC=∠DAB.又∵∠AFC=∠ADB=90°,∴△FAC∽△DAB.……………………6分∴.FAFCDADB即2.xmmxa解得2.axmxa∴2222axaxCEEFxaxa.·····················8分图④FEDBAC∵CECDDEAD,∴2axbxxa.···························10分整理得2()0xabxab.解得2216,2abababx22262abababx(舍去).·······················································································12分(3)当∠ACB为钝角时,如图④,作∠DAE=45°,AE和BC的延长线相交于点E,过点C作CF⊥AE于点F.与(1)中的求法类似,可设ADDEx,CFEFm,则2AFxm.同(1)中的理由,得△FAC∽△DAB,2axCExa.∵ADDECECD,∴2axxbxa.·······························16分整理,得2()0xabxab,解得226.2abababx…17分综上,AD的长为a或2262ababab或2262ababab或2262ababab.······························································18分