6745123第2题图1.解:因为a、b都是有理数,且(1)7()0aab,所以10a,且0ab,得1,1ab,所以1ab.故选A.2.解:若将图中标有1的面去掉,则标有2、3、4、5、6、7的六个面恰好是正方体的一种展开图,其中标有3和6的面是对面;只看题图最下面一行,标有3和1的面应是对面,所以重叠的两个面是标有1和6的面,应选B.3.解:(1)∵AD∥BC,∴∠DAE=111222DACACB,∴①正确;(2)∵AD∥BC,∴△AOD∽△COB,∴ADAOCBCO,∴②正确;(3)∠AEB=∠DAE+∠ADB=∠DAE+∠CBD=1()2,∴③正确;(4)∵∠BAC=180(),只有当AB∥DC时,∠ACD=180()才能成立.∴④不正确.综上,应选B.4.解:由图象可知当12yy时,3x,当01y时,1x,所以当012yy时,13x.故应选C.5.解:如右图,解:由33axax,得(1)(3)0ax,由不等式的解集为3x,知30x,所以10a,得1a.故应选B.6.解:从点A出发,每次向上或向右走一步,到达每一点的最短路径条数如图中所标数字,如:到达点P、Q的最短路径条数分别为2和3.以此类推,到达点B的最短路径条数为35条.选D.7.解:原式=22211.228.解:由图象可知1k为负数,2k、3k为正数,不妨取x=1,代入解析式,显然点2(1,)Ak在点3(1,)Bk的正下方,所以320kk,又1k为负数,所以123kkk.题号123456答案ABBCBD题号789101112答案22211.22123kkk0.24cm4120139.解:摸出的2个球都是黑球的概率是2116515,所以摸出的球颜色一样的概率是113155.10.解:在Rt△ADC中,∠A=30°,得ACDC21,同理BCEC21,所以4212121ABBCACECDC(cm).11.解:由题意得2272mmm,解得120,8mm,当10m时,原方程无实数根,当28m时,原方程有两个不相等的实数根,所以8164m.12解:令1111456670a,则原式=1671a13a113671a×a=211132013671aaa2113671aaa=12013.13.【答案】设这个单位参加健身操比赛的职工有y人,6人、5人、4人一列分别可以整排a、b、c列,则62524yabc.(a、b、c是正整数)∴6252,624.abac①②·················································4分由②,得62312(1).422aaaac因为c为正整数,可令12,am所以21,am(m是正整数)③将③代入①,得6(21)252.mb∴122102(1).55mmmb··················································7分因为b为正整数,可令15,mn所以51,mn(n是正整数)④将④代入③,得2(51)1101.ann···································11分∴626(101)2608.yann(n是正整数).当n=1时,y有最小值52.即参加比赛列队的至少有52人.········14分14.【答案】(1)∵E、B、C、H、F在同一圆上,且∠EBC=90°,∴∠EHC=90°,∠EFC=90°.·················································2分又∠FBC=∠HBC=45°,∴CF=CH.······································4分∵∠HBF+∠HCF=180°,∴∠HCF=90°.·······························6分∴四边形EFCH是正方形.···················································8分(2)∵∠GHB+∠GCB=180°,图③FEDBAC图④FEDBAC∴∠GHB=90°,由(1)知∠CHE=90°,∴∠CHG+∠CHB=∠EHB+∠CHB.∴∠CHG=∠EHB.∴CG=BE=x,∴DG=1DCCGx.·······························12分∴△CGH中,CG边上是高为11(1).22DGx∴211111(1).224216yxxx····································15分当x=12时,y有最大值116.·················································16分15.【答案】(1)当∠ACB为直角时,△ABC为直角三角形,b=0,AD=AC=BD=a.········································································2分(2)当∠ACB为锐角时,如图③,作∠DAE=45°,AE和BC的延长线相交于点E,过点C作CF⊥AE于点F.则△CEF和△ADE都是等腰直角三角形.设ADDEx,CFEFm.则2AEx.∴2AFxm.··4分∵∠FAC+∠CAD=45°,∠DAB+∠CAD=45°,∴∠FAC=∠DAB.又∵∠AFC=∠ADB=90°,∴△FAC∽△DAB.……………………6分∴.FAFCDADB即2.xmmxa解得2.axmxa∴2222axaxCEEFxaxa.·····················8分∵CECDDEAD,∴2axbxxa.···························10分整理得2()0xabxab.解得2216,2abababx22262abababx(舍去).·······················································································12分(3)当∠ACB为钝角时,如图④,作∠DAE=45°,AE和BC的延长线相交于点E,过点C作CF⊥AE于点F.与(1)中的求法类似,可设ADDEx,CFEFm,则2AFxm.同(1)中的理由,得△FAC∽△DAB,2axCExa.∵ADDECECD,∴2axxbxa.·······························16分整理,得2()0xabxab,解得226.2abababx…17分综上,AD的长为a或2262ababab或2262ababab或2262ababab.······························································18分