圆锥曲线重要几何量问题的求解纵观近几年全国高中数学联赛和部分省市高中数学竞赛试题,圆锥曲线是命题的热点之一,而且比较接近高考.在圆锥曲线中,焦半径、焦(顶)点弦长、焦(顶)点三角形面积等是非常重要的几何量,也是各类竞赛的重点.为此,本讲主要介绍与这些几何量有关问题的求解策略.一、基础知识1.圆锥曲线定义、方程、基本元素a、b、c、e、p之间的关系,焦半径以及一些重要公式.2.焦点弦长:AB是经过圆锥曲线(指的是椭圆b2x2+a2y2=a2b2(a>b>0)、双曲线b2x2-a2y2=a2b2(a>0,b>0)、抛物线y2=2px(p>0),以下相同)焦点的弦,若AB的倾斜角为α,半焦距为c,则(1)对于椭圆,|AB|=2ab2/(b2+c2sin2α);(2)对于双曲线,|AB|=2ab2/|b2-c2sin2α|;(3)对于抛物线,|AB|=2p/sin2α.证明过程见文[1],此处从略.3.顶点弦长:经过圆锥曲线顶点A(对于椭圆或双曲线,指的是长轴或实轴顶点)作倾斜角为α的弦AB,半焦距为c,则(1)对于椭圆,|AB|=2ab2|cosα|/(b2+c2sin2α);(2)对于双曲线,|AB|=2ab2|cosα|/|b2-c2sin2α|;(3)对于抛物线,|AB|=2p|cosα|/sin2α.证明过程见文[2],此处从略.4.焦点三角形的面积:P是椭圆b2x2+a2y2=a2b2(a>b>0)或双曲线b2x2-a2y2=a2b2(a>0,b>0)上一点,F1、F2是两焦点,若∠F1PF2=α,则(1)对于椭圆,S△F1PF2=b2tg(α/2);(2)对于双曲线,S△F1PF2=b2ctg(α/2).一般的书刊资料均可找到,证明从略.例1在椭圆b2x2+a2y=a2b2(a>b>0)中,记左焦点为F,右顶点为A,上顶点为B,若该椭圆的离心率e=(1/2)(-1),求∠ABF.(2000年全国高中数学联赛题).导析:如图1,△ABF是椭圆的一焦点和两顶点组成的,是一个非常特殊的三角形.但在短暂的思考中学生也是不易找到方法.这时教师可提醒学生观察图中的三角形,它们的边均与a,b,c有关,由此可改造条件.即由e=ca=(1/2)(-1)可得2c+a=a,两边平方可得b2=ac,由此结论便迎刃而解了,且方法是多样的.即用相似三角形或两斜率的积或用两角和的正、余弦均可得∠ABF=90°.例2已知点P在双曲线(x2/16)-(y2/9)=1,且点P到这条双曲线的右准线的距离恰是点P到这条双曲线的两个焦点的距离的比例中项,那么点P的横坐标是.(1999年全国联赛题).导析:学生见到此题,常常会用如下方法:设左、右焦点为F1、F2,点P(x,y)到右准线x=a2/c=16/5的距离为d,则2d=|PF1|+|PF2|,由此即得方程组这是多么复杂的运算,能回避吗?教师可提醒学生直接运用焦半径公式,即由双曲线焦半径公式及题设便得2|x-(16/5)|=|4-(5/4)x|+|4+(5/4)x|.结合双曲线的范围x≤-4或x≥4即可得x=-64/5.例3F是抛物线y2=2px(p>0)的焦点,P为抛物线上一点,抛物线的准线l交x轴于H,若∠PFH=α,∠PHF=β,求证:sinα=tgβ.导析:这是与圆锥曲线焦半径有关的三角恒等式,虽然学生很少遇到此类问题,但是通过观察,学生自然会画图分析,这时教师可引导学生从抛物线定义和正弦定理来思考,即作PQ⊥l,垂足为Q,则有|PQ|=|PF|,∠QPH=β,从而有|PH|=|PQ|/cosβ=|PF|/cosβ和|PH|/sinα=|PF|/sinβ.由这两个等式易得sinα=tgβ.二、综合应用圆锥曲线涉及知识面广,如平面几何、平面三角、代数等知识,它是高中数学中综合性较强的一个学科.故在解答解析几何综合题时,教师要注意引导学生掌握重要的数学思想方法,如数形结合、等价转化、对称、分类讨论等思想,注意知识的纵横联系.例4经过椭圆(x2/4)+(y2/2)=1的长轴顶点A作椭圆的弦AB,若|AB|=8/7,试求弦AB的倾斜角α.导析:此题涉及二次曲线弦长问题,课本是极少提及的.若学生的思路方法不当,则运算量较大,甚至难以完成.若教师给予启发诱导,则学生是能解决的.常用方法有:①应用弦长公式|AB|=|xA-xB|·和韦达定理;②运用直线参数t的几何意义;③直接应用顶点弦长公式.下面给出两种解法:解法1由对称性,不妨设A为右顶点(2,0),则直线AB的参数方程为(t为参数),代入椭圆方程得(cos2α+2sin2α)t2+4cosα·t=0.由t的几何意义知|AB|=|tB|=4|cosα|/(cos2α+2sin2α)=8/7,从而得2|cosα|2+7|cosα|-4=0α=60°或120°.解法2由椭圆顶点弦长公式得8/7=2·2·2|cosα|/(2+2sin2α).以下同法1.例5AB是经过椭圆b2x2+a2y2=a2b2(a>b>0)焦点的任一弦,若过椭圆中心O的弦MN∥AB,求证:|MN|2∶|AB|是定值.导析:求解定值问题是学生感到比较困难的,而难点主要在于定值究竟是什么,一旦找出了定值,那么问题就转化为一般相等关系的证明了.教师可给学生介绍一些求定值问题的常用方法,如本题可从一般退向特殊,特殊问题的解决可为我们解决一般问题提供有益的启示,可作为解决一般问题的借鉴和有力工具.对于本题,MN、AB分别为中心弦和焦点弦,可将其倾斜角退到0°,此时有|MN|2=4a2,|AB|=2a.∴|MN|2∶|AB|=2a(定值).下面再证明一般性.设平行弦MN、AB的倾斜角为α,则MN的方程为(t为参数),代入椭圆方程后注意到t的几何意义即得|MN|2=4a2b2/(b2+c2sin2α).①另一方面,AB的参数方程为(t为参数).仿①可得|AB|=2ab2/(b2+c2sin2α).②得|MN|2∶|AB|=2a(定值).关于②式也可直接由焦点弦长公式得到.例6某建筑工地要挖一个横截面为半圆柱形的土坑,挖出的土只能沿AP、BP运到P处,如图3,其中AP=100m,BP=150m,∠APB=60°,问怎样运土才能最省工?导析:这是一道解析几何建模应用题.即要在半圆内划出一条分界线,这就要运用解析几何知识.“最省工”的含义是:到点P的距离最近,所以半圆内的点有三类:①沿AP到P较近;②沿BP到P接近;③沿AP、BP到P等距.其中第③类点集是第①、②类点集之交集(分界线).设M是分界线上任一点,则有|MA|+|AP|=|MB|+|MP|,即|MA|-|MB|=|PB|-|PA|=50(定值).M在以A、B为焦点的双曲线右支上.由题设可得|AB|2=17500,于是以AB所在直线为x轴,AB中垂线为y轴建立直角坐标系,可得分界线是双曲线弧:(x2/625)-(y2/3750)=1(x≥25).故运土时在双曲线左侧的土沿AP运到P处,右侧的土沿BP运到P处最省工.例7l是椭圆的右准线,F1、F2是左、右焦点,P∈l.若椭圆的离心率e=/2,试求∠F1PF2的最大值.导析:此问题一出现,学生遇到的第一个困难是如何建立e与∠F1PF2(记为α)的关系式.教师可引导学生画图分析,步步追踪.如图4,由对称性,不妨设椭圆方程为(x2/a2)+(y2/b2)=1(a>b>0),l为右准线且P在x轴上方,由此可设点P为(a2/c,y)(y>0),又在F1(-c,0)、F2(c,0),在△PF1F2中,由两条直线所成的角得tgα=(kPF2-kPF1)/(1+kPF1·kPF2.①又∵kPF1=y∶((a2/c)+c),kPF2=y∶((a2/c)-c),代入①得tgα=2c3y/(a4-c4+c2y2),∵y>0,a4-c4>0,∴tgα>0.又∵α∈(0,π),∴α为锐角.由基本不等式得tgα≤当且仅当a4-c4=c2y2,即yp=(1/c)时取“=”.从而可得ctg2α≥(a4-c4)/c4=e-4-1,∴csc2α≥e-4.∴sinα≤e2=(/2)2.∵sinα在(0,π/2)上是增函数,∴α的最大值为π/6.三、强化训练1.已知A为双曲线x2-y2=1的左顶点,点B和C在双曲线的右支上,△ABC是等边三角形,则△ABC的面积是().A./3B.(3/2)C.3D.6(2000年全国联赛)2.P是椭圆上的一点,F1、F2是两个焦点,若恒有∠F1PF2=60°,则该椭圆的离心率e的范围是().A.(0,1)B.[/2,1)C.[/3,1)D.[1/2,1).3.圆x2+y2=r2过椭圆b2x2+a2y2=a2b2(a>b>0)的两个焦点F1(-c,0)、F2(c,0),它们有四个交点,其中一个交点为P,若△PF1F2的面积为26,椭圆长轴为15,则a+b+c=_____.(2000年“希望杯”赛题)4.设O为抛物线的顶点,F为焦点,PQ为过F的弦,已知|OF|=a,|PQ|=b,则S△POQ=_____.5.双曲线的离心率e=2+--,过双曲线的右焦点F2作垂直于双曲线的实轴的直线交双曲线于一点P,F1为左焦点,试求∠PF1F2的大小.(1998年河南省、重庆市高中赛题)6.经过椭圆b2x2+a2y2=a2b2(a>b>0)的长轴顶点A作倾斜角为45°的弦AB,若弦AB的长恰好等于椭圆的通径长,试求此椭圆的离心率e.7.l是椭圆b2x2+a2y2=a2b2(a>b>0)的左准线,在椭圆上放置n个点(n>1)使每相邻两点与左焦点F连线所成的夹角均相等,如图5,∠P1FP2=∠P2FP3=…=∠PnFP1=2π/n,试证明:这n个点到l的距离的倒数之和为一个仅与n有关的常数.参考答案与提示:1.C.由对称性知∠BAx=∠CAx=30°,|AB|=|AC|.从而可按求弦长的思路求得|AB|=2,也可运用顶点弦长公式知|AB|=2·1·1·cos30°/|1-2sin230°|=2.S△ABC=(1/2)|AB|2sin60°=3.2.D.可用焦半径公式和余弦定理等有关知识求解,也可直接运用焦点三角形的面积公式.3.a+b+c=13+.易知∠F1PF2=90°,从而可用勾股定理和椭圆定义等有关知识求解,也可直接运用焦点三角形的面积公式.4.S△POQ=a.本题可用焦点弦长公式求出弦PQ的倾斜角,然后再用三角形的面积公式求解.也可建立极坐标系利用极径及极角求解.5.设∠PF1F2=α,双曲线方程为b2x2-a2y2=a2b2,∵PF2⊥F1F2,∴xp=c,由焦半径公式得|PF2|=|a-exp|=|a-ec|=ec-a=(1/a)(c2-a2).又∵|F1F2|=2c,∴tgα=|PF2|∶|F1F2|=(1/a)(c2-a2)∶(2c).tgα=(c2-a2)/2ac=(1/2)(e-(1/e))…=2-.=15°.6.可按求弦长的方法求出通径和|AB|的表达式,也可直接应用通径长为2b/a和顶点弦长公式.所求离心率e=7.设在椭圆上的n个点为P1、P2、…,Pn,它们到l:x=-(a2/c)的距离记为d1、d2,…,dn,α=2π/n,∠P1FO=β,由椭圆定义得|PiF|=edi(i=1,2,…,n).如图5知di-|PiF|cos[(i-1)α+β]=(a2/c)-c,即di-edicos[(i-1)α+β]=b2/c,di=.经计算知故(是仅与n有关的常数).参考文献1玉邴图.圆锥曲线焦点弦长的三角形式及应用.中学数学(武汉),1997.92玉邴图.圆锥曲线顶点弦长的一种计算方法.数学大世界(高中版)(长春),1998,9