贵州省六盘水市2015年中考数学试卷温馨提示:1.本试卷包括试题卷和答题卡,所有答案必须填涂或书写在答题卡上规定的位置,否则无效,考试结束后,试题卷和答题卡一并收回。2.答题前,请认真阅读答题卡上的“注意事项”。3.本试题卷共6页,满分150分,考试时间120分钟。一、选择题(本题共10道小题,每小题3分,共计30分,在四个选项中只有一个选项符合题意,请把它选出来填涂在答题卡相应的位置)1.下列说法正确的是()A.22B.0的倒数是0C.4的平方根是2D.-3的相反数是3考点:平方根;相反数;绝对值;倒数..专题:计算题.分析:利用绝对值的代数意义,倒数的定义,平方根及相反数的定义判断即可.解答:解:A、|﹣2|=2,错误;B、0没有倒数,错误;C、4的平方根为±2,错误;D、﹣3的相反数为3,正确,故选D点评:此题考查了平方根,相反数,绝对值以及倒数,熟练掌握各自的定义是解本题的关键.2.如图1,直线l1和直线l2被直线l所截,已知l1∥l2,∠1=70°,则∠2=()A.110°B.90°C.70°D.50°考点:平行线的性质..分析:根据平行线的性质得出∠2=∠3,然后根据对顶角相等得出∠3=∠1=70°,即可求出答案.解答:解:∵∠3=∠1=70°,∵直线l1∥l2,∴∠3=∠2,∵∠3=∠1=70°,∴∠2=70°,故选C.点评:本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.3.袋中有5个红球、4个白球、3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是白球的概率()A.41B.31C.125D.127考点:概率公式..分析:让白球的个数除以球的总数即为摸到白球的概率.解答:解:∵布袋中装有5个红球、4个白球、3个黄球,共12个球,从袋中任意摸出一个球共有12种结果,其中出现白球的情况有4种可能,∴是白球的概率是=.故答案为:.点评:本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.如图2是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对B.相邻C.相隔D.重合考点:专题:正方体相对两个面上的文字..分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面,“我”与“祖”是相对面,“爱”与“的”是相对面.故原正方体上两个“我”字所在面的位置关系是相邻.故选B.点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.下列说法不‧正确的是()A.圆锥的俯视图是圆B.对角线互相垂直平分的四边形是菱形C.任意一个等腰三角形是钝角三角形D.周长相等的正方形、长方形、圆,这三个几何图形中,圆面积最大考点:命题与定理..分析:根据三视图、菱形的判定定理、等腰三角形的性质、正方形的性质、即可解答.解答:解:A、圆锥的俯视图是圆,正确;B、对角线互相垂直平分的四边形是菱形,正确;C、任意一个等腰三角形是钝角三角形,错误;例如,顶角为80°的等腰三角形,它的两个底角分别为50°,50°,为锐角三角形;D、周长相等的正方形、长方形、圆,这三个几何图形中,圆面积最大,正确;故选:C.点评:本题考查了命题与定理,解决本题的关键是熟记三视图、菱形的判定定理、等腰三角形的性质、正方形的性质.6.下列运算结果正确的是()A.7221)83(87B.1042.768.2C.66.411.777.3D.103102102101考点:有理数的乘法;有理数大小比较;有理数的减法..专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式=7221,正确;B、原式=﹣10.1,错误;C、原式=﹣3.34,错误;D、﹣>﹣,错误,故选A点评:此题考查了有理数的乘法,有理数的大小比较,以及有理数的减法,熟练掌握运算法则是解本题的关键.7.“魅力凉都六盘水”某周连续7天的最高气温(单位°C)是26,24,23,18,22,22,25,则这组数据的中位数是()A.18B.22C.23D.24考点:中位数..分析:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数就是这组数据的中位数.解答:解:把数据按从小到大的顺序排列为:18、22、22、23、24、25、26,则中位数是:23.故选:C.点评:本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.8.如图3,表示7的点在数轴上表示时,所在哪两个字母之间()A.C与DB.A与BC.A与CD.B与C考点:估算无理数的大小;实数与数轴..专题:计算题.分析:确定出7的范围,利用算术平方根求出的范围,即可得到结果.解答:解:∵6.25<7<9,∴2.5<<3,则表示的点在数轴上表示时,所在C和D两个字母之间.故选A点评:此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.9.如图4,已知∠ABC=∠DCB,下列所给条件不‧能证明△ABC≌△DCB的是()A.∠A=∠DB.AB=DCC.∠ACB=∠DBCD.AC=BD考点:全等三角形的判定..分析:本题要判定△ABC≌△DCB,已知∠ABC=∠DCB,BC是公共边,具备了一组边对应相等,一组角对应相等,故添加AB=CD、∠ACB=∠DBC、∠A=∠D后可分别根据SAS、ASA、AAS能判定△ABC≌△DCB,而添加AC=BD后则不能.解答:解:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;故选:D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图5,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2C.64m2D.66m2考点:二次函数的应用..专题:应用题.分析:设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式,利用二次函数性质求出面积最大值即可.解答:解:设BC=xm,则AB=(16﹣x)m,矩形ABCD面积为ym2,根据题意得:y=(16﹣x)x=﹣x2+16x=﹣(x﹣8)2+64,当x=8m时,ymax=64m2,则所围成矩形ABCD的最大面积是64m2.故选C.点评:此题考查了二次函数的应用,熟练掌握二次函数性质是解本题的关键.二、填空题(本大题共8小题,每小题4分,满分32分)11.如图6所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=.考点:圆周角定理..专题:计算题.分析:直接根据圆周角定理求解.解答:解:∠ACB=∠AOB=×80°=40°.故答案为40.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是:.考点:坐标确定位置..分析:先根据红方“马”的位置向左3个单位,向下5个单位为坐标原点建立平面直角坐标系,然后写出点B的坐标即可.解答:解:建立平面直角坐标系如图所示,点B的坐标为(2,7).故答案为:(2,7).点评:本题考查了坐标确定位置,理解平面直角坐标系的定义,准确确定出坐标原点的位置是解题的关键.13.已知x1=3是关于x的一元二次方程042cxx的一个根,则方程的另一个根x2是.考点:根与系数的关系..分析:根据根与系数的关系,由两根之和可以求出方程的另一个根.解答:解:设方程的另一个根是x2,则:3+x2=4,解得x=1,故另一个根是1.故答案为1.点评:本题考查的是一元二次方程的解,根据根与系数的关系,由两根之和可以求出方程的另一个根.14.已知0654abc,则acb的值为.考点:比例的性质..分析:根据比例的性质,可用a表示b、c,根据分式的性质,可得答案.解答:解:由比例的性质,得c=a,b=a.===.故答案为:.点评:本题考查了比例的性质,利用比例的性质得出a表示b、c是解题关键,又利用了分式的性质.15.如图8,有一个英语单词,四个字母都关于直线l对称,请在试卷上补全字母,在答题卡上写出这个单词所指的物品.考点:轴对称图形..分析:根据轴对称图形的性质,组成图形,即可解答.解答:解:如图,这个单词所指的物品是书.故答案为:书.点评:本题考查了轴对称图形,解决本题的关键是根据轴对称的性质,作出图形.16.2014年10月24日,“亚洲基础设施投资银行”在北京成立,我国出资500亿美元‧‧‧,这个数用科学记数法表示为美元‧‧.考点:科学记数法—表示较大的数.专题:计算题.分析:把500亿美元化为美元,表示为科学记数法即可.解答:解:根据题意得:500亿美元=5×1010美元,故答案为:5×1010点评:此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.在正方形A1B1C1O和A2B2C2C1,按如图9所示方式放置,在直线1xy上,点C1,C2在x轴上,已知A1点的坐标是(0,1),则点B2的坐标为.考点:一次函数图象上点的坐标特征;正方形的性质..专题:规律型.分析:根据直线解析式先求出OA1=1,求得第一个正方形的边长,再求出第二个正方形的边长为2,即可求得B2的坐标.解答:解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴A2C1=C1C2=2,∴OC2=OC1+C1C2=1+2=3,∴B2(3,2).故答案为(3,2).点评:本题考查了一次函数图象上点的坐标特征以及正方形的性质;求出第一个正方形、第二个正方形的边长是解决问题的关键.18.赵洲桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙。如图10,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=米.考点:垂径定理的应用;勾股定理..分析:根据垂径定理和勾股定理求解即可.解答:解:根据垂径定理,得AD=AB=20米.设圆的半径是r,根据勾股定理,得R2=202+(R﹣10)2,解得R=25(米).故答案为25.点评:此题综合运用了勾股定理以及垂径定理.注意构造由半径、半弦、弦心距组成的直角三角形进行有关的计算.三、解答题(本大题共8小题,共88分。答题时应写出必要的运算步骤,推理过程,作图痕迹以及文字说明,超出答题区域书写的作答无效)19.(本小题8分)计算:201)2()3()21(30tan323考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值..专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,第四项利用零指数幂法则计算,最后一项利用平方根定义计算即可得到结果.解答:解:原式=2﹣+3×+2﹣1﹣2=1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(本小题8分)如图11,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面