2015年陕西省中考数学试题解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

陕西省2015年中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:(﹣)0=()A.1B.﹣C.0D.考点:零指数幂..分析:根据零指数幂:a0=1(a≠0),求出(﹣)0的值是多少即可.解答:解:(﹣)0=1.故选:A.点评:此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.2.(3分)(2015•陕西)如图是一个螺母的示意图,它的俯视图是()A.B.C.D.考点:简单组合体的三视图..分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看外面是一个正六边形,里面是一个没有圆心的圆,故选:B.点评:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.3.(3分)(2015•陕西)下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a2b2÷a2b2=3ab考点:整式的除法;同底数幂的乘法;幂的乘方与积的乘方..分析:根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.解答:解:A、a2•a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.点评:本题考查了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决本题的关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法的法则.4.(3分)(2015•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠1的度数为()A.43°30′B.53°30′C.133°30′D.153°30′考点:平行线的性质..分析:先根据平行线的性质求出∠EFD的度数,再根据补角的定义即可得出结论.解答:解:∵AB∥CD,∠1=46°30′,∴∠EFD=∠1=46°30′,∴∠2=180°﹣46°30′=133°30′.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两线平行,同位角相等.5.(3分)(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣4考点:正比例函数的性质..分析:直接根据正比例函数的性质和待定系数法求解即可.解答:解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选B点评:本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0,图象经过第一、三象限,y值随x的增大而增大;当k<0,图象经过第二、四象限,y值随x的增大而减小.6.(3分)(2015•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个考点:等腰三角形的判定与性质..分析:根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.解答:解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.点评:此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.7.(3分)(2015•陕西)不等式组的最大整数解为()A.8B.6C.5D.4考点:一元一次不等式组的整数解..分析:先求出各个不等式的解集,再求出不等式组的解集,最后求出答案即可.解答:解:∵解不等式①得:x≥﹣8,解不等式②得:x<6,∴不等式组的解集为﹣8≤x<6,∴不等式组的最大整数解为5,故选C.点评:本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.8.(3分)(2015•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度考点:一次函数图象与几何变换..分析:利用一次函数图象的平移规律,左加右减,上加下减,得出即可.解答:解:∵将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,∴﹣2(x+a)﹣2=﹣2x+4,解得:a=﹣3,故将l1向右平移3个单位长度.故选:A.点评:此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.9.(3分)(2015•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或8考点:平行四边形的性质;勾股定理;正方形的性质..专题:分类讨论.分析:设AE的长为x,根据正方形的性质可得BE=14﹣x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为x,根据正方形的性质可得BE=14﹣x,在△ABE中,根据勾股定理可得x2+(14﹣x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.10.(3分)(2015•陕西)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧考点:抛物线与x轴的交点..分析:根据函数值为零,可得相应的方程,根据根的判别式,公式法求方程的根,可得答案.解答:解:当y=0时,ax2﹣2ax+1=0,∵a>1∴△=(﹣2a)2﹣4a=4a(a﹣1)>0,ax2﹣2ax+1=0有两个根,函数与有两个交点,x=>0,故选:D.点评:本题考查了抛物线与x轴的交点,利用了函数与方程的关系,方程的求根公式.二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2015•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为﹣6.考点:实数大小比较..分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:≈2.236,π≈3.14,∵﹣6<0<2.236<3.14,∴﹣6.故答案为:﹣6.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)(2015•陕西)正八边形一个内角的度数为135°.考点:多边形内角与外角..分析:首先根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.解答:解:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为×1080°=135°.故答案为:135°.点评:此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180(n≥3)且n为整数).13.(2015•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为27.8°(用科学计算器计算,结果精确到0.1°).考点:解直角三角形的应用-坡度坡角问题..分析:直接利用坡度的定义求得坡角的度数即可.解答:解:∵tan∠A==≈0.5283,∴∠A=27.8°,故答案为:27.8°.点评:本题考查了坡度坡角的知识,解题时注意坡角的正切值等于铅直高度与水平宽度的比值,难度不大.14.(3分)(2015•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10.考点:反比例函数系数k的几何意义..分析:设点A的坐标为(a,b),点B的坐标为(c,d),根据反比例函数y=的图象过A,B两点,所以ab=4,cd=4,进而得到S△AOC=|ab|=2,S△BOD=|cd|=2,S矩形MCDO=3×2=6,根据四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO,即可解答.解答:解:如图,设点A的坐标为(a,b),点B的坐标为(c,d),∵反比例函数y=的图象过A,B两点,∴ab=4,cd=4,∴S△AOC=|ab|=2,S△BOD=|cd|=2,∵点M(﹣3,2),∴S矩形MCDO=3×2=6,∴四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO=2+2+6=10,故答案为:10.点评:本题主要考查反比例函数的对称性和k的几何意义,根据条件得出S△AOC=|ab|=2,S△BOD=|cd|=2是解题的关键,注意k的几何意义的应用.15.(3分)(2015•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是3.考点:三角形中位线定理;等腰直角三角形;圆周角定理..分析:根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.解答:解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3故答案为:3.点评:本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2015•陕西)计算:×(﹣)+|﹣2|+()﹣3.考点:二次根式的混合运算;负整数指数幂..专题:计算题.分析:根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8,然后化简后合并即可.解答:解:原式=﹣+2+8=﹣3+2+8=8﹣.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数整数幂、17.(5分)(2015•陕西)解分式方程:﹣=1.考点:解分式方程..专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(5分)(2015•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)考点:作图—复杂作图..分析:作BC边上的中线,即可把△ABC分成面积相等的两部分.解答:解:如图,直线AD即为所求:点评:此题主要考查三角形中线的作法,同时要掌握若两个三角形等底等高,则它们的面积相等.19.(5分)(2015•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功